Ping Xia, Chunyang Liu, Xiaoyue Wei, Jiali Guo and Yongxiang Luo
{"title":"3D-Printed hydrogel scaffolds with drug- and stem cell-laden core/shell filaments for cancer therapy and soft tissue repair","authors":"Ping Xia, Chunyang Liu, Xiaoyue Wei, Jiali Guo and Yongxiang Luo","doi":"10.1039/D4TB01571A","DOIUrl":null,"url":null,"abstract":"<p >Treatment of local tumor recurrence and repair of the tissue defects after tumorectomy still remain clinical challenges. Currently, controlled release of therapeutic drugs is one of the widely used approaches to kill the residual and recurrent cancer cells, and stem cell-laden hydrogel scaffolds are promising candidates for soft tissue repair. However, hydrogel scaffolds with the bifunction of controlled release of therapeutic drugs for cancer therapy and loading stem cells for tissue repair are still not well established. In this study, we fabricated a biphasic hydrogel scaffold containing two types of core/shell filaments with drugs and stem cells loaded in the core part of these two filaments. Black phosphorus nanosheets were added to alginate (the shell layer) in the drug-loaded filament, endowing the scaffold with a photothermal effect under near infrared (NIR) laser irradiation. Moreover, NIR could trigger the drug release from the core/shell filaments to achieve photothermal-chemotherapy of cancer. Additionally, stem cells embedded in the core parts of the other filaments could maintain high cell viability due to the protection of the shell layer (pure alginate), which promoted soft tissue regeneration <em>in vivo</em>. Thus, the prepared biphasic scaffold with drug- and stem cell-laden core/shell filaments may be a potential candidate to fill the tissue defects after the surgical resection of tumors to kill the residual and recurrent cancer and repair the tissue defects.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01571a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment of local tumor recurrence and repair of the tissue defects after tumorectomy still remain clinical challenges. Currently, controlled release of therapeutic drugs is one of the widely used approaches to kill the residual and recurrent cancer cells, and stem cell-laden hydrogel scaffolds are promising candidates for soft tissue repair. However, hydrogel scaffolds with the bifunction of controlled release of therapeutic drugs for cancer therapy and loading stem cells for tissue repair are still not well established. In this study, we fabricated a biphasic hydrogel scaffold containing two types of core/shell filaments with drugs and stem cells loaded in the core part of these two filaments. Black phosphorus nanosheets were added to alginate (the shell layer) in the drug-loaded filament, endowing the scaffold with a photothermal effect under near infrared (NIR) laser irradiation. Moreover, NIR could trigger the drug release from the core/shell filaments to achieve photothermal-chemotherapy of cancer. Additionally, stem cells embedded in the core parts of the other filaments could maintain high cell viability due to the protection of the shell layer (pure alginate), which promoted soft tissue regeneration in vivo. Thus, the prepared biphasic scaffold with drug- and stem cell-laden core/shell filaments may be a potential candidate to fill the tissue defects after the surgical resection of tumors to kill the residual and recurrent cancer and repair the tissue defects.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices