Shasha Liu, Yanping Li, Jinrong Yang, Lei Zhang and Jinwu Yan
{"title":"An in situ-activated and chemi-excited photooxygenation system based on G-poly(thioacetal) for Aβ1–42 aggregates†","authors":"Shasha Liu, Yanping Li, Jinrong Yang, Lei Zhang and Jinwu Yan","doi":"10.1039/D4TB01147C","DOIUrl":null,"url":null,"abstract":"<p >The abnormal aggregation of Aβ proteins, inflammatory responses, and mitochondrial dysfunction have been reported as major targets in Alzheimer's disease (AD). Photooxygenation of the amyloid-β peptide (Aβ) is viewed as a promising therapeutic intervention for AD treatment. However, the limitations of the depth of the external light source passing through the brain and the toxic side effects on healthy tissues are two significant challenges in the photooxidation of Aβ aggregates. We proposed a method to initiate the chemical stimulation of Aβ<small><sub>1–42</sub></small> aggregate oxidation through H<small><sub>2</sub></small>O<small><sub>2</sub></small> and correct the abnormal microenvironment of the lesions by eliminating the cascading reactions of oxidative stress. The degradable G-poly(thioacetal) undergoes cascade release of cinnamaldehyde (CA) and thioacetal triggered by endogenous H<small><sub>2</sub></small>O<small><sub>2</sub></small>, with CA in turn amplifying degradation by generating more H<small><sub>2</sub></small>O<small><sub>2</sub></small> through mitochondrial dysfunction. A series of novel photosensitizers have been prepared and synthesized for use in the photodynamic oxidation of Aβ<small><sub>1–42</sub></small> aggregates under white light activation. The nanoparticles (BD-6-QM/NPs) self-assembled from BD-6-QM, bis[2,4,5-trichloro-6-(pentoxycarbonyl) phenyl] ester (CPPO), and G-poly(thioacetal) not only exhibit H<small><sub>2</sub></small>O<small><sub>2</sub></small>-stimulated controlled release but also can be chemically triggered by H<small><sub>2</sub></small>O<small><sub>2</sub></small> to generate singlet oxygen to inhibit Aβ<small><sub>1–42</sub></small> aggregates, reducing the Aβ<small><sub>1–42</sub></small>-induced neurotoxicity.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 42","pages":" 10850-10860"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01147c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The abnormal aggregation of Aβ proteins, inflammatory responses, and mitochondrial dysfunction have been reported as major targets in Alzheimer's disease (AD). Photooxygenation of the amyloid-β peptide (Aβ) is viewed as a promising therapeutic intervention for AD treatment. However, the limitations of the depth of the external light source passing through the brain and the toxic side effects on healthy tissues are two significant challenges in the photooxidation of Aβ aggregates. We proposed a method to initiate the chemical stimulation of Aβ1–42 aggregate oxidation through H2O2 and correct the abnormal microenvironment of the lesions by eliminating the cascading reactions of oxidative stress. The degradable G-poly(thioacetal) undergoes cascade release of cinnamaldehyde (CA) and thioacetal triggered by endogenous H2O2, with CA in turn amplifying degradation by generating more H2O2 through mitochondrial dysfunction. A series of novel photosensitizers have been prepared and synthesized for use in the photodynamic oxidation of Aβ1–42 aggregates under white light activation. The nanoparticles (BD-6-QM/NPs) self-assembled from BD-6-QM, bis[2,4,5-trichloro-6-(pentoxycarbonyl) phenyl] ester (CPPO), and G-poly(thioacetal) not only exhibit H2O2-stimulated controlled release but also can be chemically triggered by H2O2 to generate singlet oxygen to inhibit Aβ1–42 aggregates, reducing the Aβ1–42-induced neurotoxicity.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices