Radiation-activated PD-L1 aptamer-functionalized nanoradiosensitizer to potentiate antitumor immunity in combined radioimmunotherapy and photothermal therapy.

Bo Chen, Yinbo He, Long Bai, Shulin Pan, Yinggang Wang, Min Mu, Rangrang Fan, Bo Han, Peter Ernst Huber, Bingwen Zou, Gang Guo
{"title":"Radiation-activated PD-L1 aptamer-functionalized nanoradiosensitizer to potentiate antitumor immunity in combined radioimmunotherapy and photothermal therapy.","authors":"Bo Chen, Yinbo He, Long Bai, Shulin Pan, Yinggang Wang, Min Mu, Rangrang Fan, Bo Han, Peter Ernst Huber, Bingwen Zou, Gang Guo","doi":"10.1039/d4tb01831a","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS)-mediated immunogenic cell death (ICD) is crucial in radioimmunotherapy by boosting innate antitumor immunity. However, the hypoxic tumor microenvironment (TME) often impedes ROS production, limiting the efficacy of radiotherapy. To tackle this challenge, a combination therapy involving radiotherapy and immune checkpoint blockade (ICB) with anti-programmed death-ligand 1 (PD-L1) has been explored to enhance antitumor effects and reprogram the immunosuppressive TME. Here, we introduce a novel PD-L1 aptamer-functionalized nanoradiosensitizer designed to augment radiotherapy by increasing X-ray deposition specifically at the tumor site. This innovative X-ray-activated nanoradiosensitizer, comprising gold-MnO<sub>2</sub> nanoflowers, efficiently enhances ROS generation under single low-dose radiation and repolarizes M2-like macrophages, thereby boosting antitumor immunity. Additionally, the ICB inhibitor BMS-202 synergizes with the PD-L1 aptamer-assisted nanoradiosensitizer to block the PD-L1 receptor, promoting T cell activation. Furthermore, this nanoradiosensitizer exhibits exceptional photothermal conversion efficiency, amplifying the ICD effect. The PD-L1-targeted nanoradiosensitizer effectively inhibits primary tumor growth and eliminates distant tumors, underscoring the potential of this strategy in optimizing both radioimmunotherapy and photothermal therapy.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb01831a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS)-mediated immunogenic cell death (ICD) is crucial in radioimmunotherapy by boosting innate antitumor immunity. However, the hypoxic tumor microenvironment (TME) often impedes ROS production, limiting the efficacy of radiotherapy. To tackle this challenge, a combination therapy involving radiotherapy and immune checkpoint blockade (ICB) with anti-programmed death-ligand 1 (PD-L1) has been explored to enhance antitumor effects and reprogram the immunosuppressive TME. Here, we introduce a novel PD-L1 aptamer-functionalized nanoradiosensitizer designed to augment radiotherapy by increasing X-ray deposition specifically at the tumor site. This innovative X-ray-activated nanoradiosensitizer, comprising gold-MnO2 nanoflowers, efficiently enhances ROS generation under single low-dose radiation and repolarizes M2-like macrophages, thereby boosting antitumor immunity. Additionally, the ICB inhibitor BMS-202 synergizes with the PD-L1 aptamer-assisted nanoradiosensitizer to block the PD-L1 receptor, promoting T cell activation. Furthermore, this nanoradiosensitizer exhibits exceptional photothermal conversion efficiency, amplifying the ICD effect. The PD-L1-targeted nanoradiosensitizer effectively inhibits primary tumor growth and eliminates distant tumors, underscoring the potential of this strategy in optimizing both radioimmunotherapy and photothermal therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辐射激活的 PD-L1 通配子功能化纳米放射增敏剂在放射免疫疗法和光热疗法联合治疗中增强抗肿瘤免疫力。
活性氧(ROS)介导的免疫原性细胞死亡(ICD)可增强先天性抗肿瘤免疫力,对放射免疫疗法至关重要。然而,缺氧的肿瘤微环境(TME)往往会阻碍ROS的产生,从而限制放射治疗的疗效。为了应对这一挑战,人们探索了放疗与抗程序性死亡配体1(PD-L1)免疫检查点阻断(ICB)的联合疗法,以增强抗肿瘤效果并重塑具有免疫抑制作用的TME。在这里,我们介绍了一种新型 PD-L1 通感剂功能化纳米放射增敏剂,其设计目的是通过增加 X 射线在肿瘤部位的特异性沉积来增强放疗效果。这种创新的 X 射线激活纳米放射增敏剂由金-二氧化锰纳米花组成,能在单次低剂量辐射下有效增强 ROS 生成,并使 M2 样巨噬细胞重新极化,从而增强抗肿瘤免疫力。此外,ICB抑制剂BMS-202与PD-L1适配体辅助纳米放射增敏剂协同阻断PD-L1受体,促进T细胞活化。此外,这种纳米放射增敏剂还表现出卓越的光热转换效率,放大了 ICD 效应。PD-L1 靶向纳米放射增敏剂能有效抑制原发性肿瘤的生长,并消除远处的肿瘤,这凸显了这一策略在优化放射免疫疗法和光热疗法方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Development of a xanthene-based NIR fluorescent probe for accurate and sensitive detection of γ-glutamyl transpeptidase in cancer diagnosis and treatment. Biomaterials enhancing localized cancer therapy activated anti-tumor immunity: a review. Quantum DFT analysis and molecular docking investigation of various potential breast cancer drugs. Machine learning-assisted pattern recognition and imaging of multiplexed cancer cells via a porphyrin-embedded dendrimer array. Enhanced luminescence and stability of TFMDSA nanoparticles via polymer-induced aggregation for bioimaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1