Hui Liu, Wenxin Lv, Darambazar Gantulga and Yi Wang
{"title":"Water-dispersible fluorescent COFs disturb lysosomal autophagy to boost cascading enzymatic chemodynamic–starvation therapy†","authors":"Hui Liu, Wenxin Lv, Darambazar Gantulga and Yi Wang","doi":"10.1039/D4TB01534G","DOIUrl":null,"url":null,"abstract":"<p >Cascading enzymatic therapy is a promising approach in cancer treatment. However, its effectiveness is often hindered by enzyme inactivation, limited exposure of active sites, cancer cell self-protection mechanisms such as autophagy, and non-specific toxicity, which can lead to treatment failure. To address these challenges, we used a low-temperature aqueous-phase synthesis method to create semi-crystalline, water-dispersible fluorescent COF nanospheres. These nanospheres can stably load glucose oxidase (GOx) and ultrafine Fe<small><sub>2</sub></small>O<small><sub>3</sub></small> nanozymes, allowing for convenient coating with tumor cell membranes to form a uniform tumor-targeted cascading enzymatic nanosystem (CFGM). This system promotes a cycle of tumor glucose depletion, reactive oxygen species (ROS) generation, and oxygen production, facilitating tumor-targeted starvation therapy (ST) and chemodynamic therapy (CDT). Notably, the semi-crystalline COF carrier within this system can degrade slowly under mildly acidic conditions, forming large aggregates that damage lysosomes and disrupt lysosomal autophagy, thereby eliminating the autophagy protection of cancer cells activated by the combined ST. This synergistic approach enhances the catalytic inhibition of tumors. Our research thus provides an alternative COF-based platform and strategy for effective cancer treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01534g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Cascading enzymatic therapy is a promising approach in cancer treatment. However, its effectiveness is often hindered by enzyme inactivation, limited exposure of active sites, cancer cell self-protection mechanisms such as autophagy, and non-specific toxicity, which can lead to treatment failure. To address these challenges, we used a low-temperature aqueous-phase synthesis method to create semi-crystalline, water-dispersible fluorescent COF nanospheres. These nanospheres can stably load glucose oxidase (GOx) and ultrafine Fe2O3 nanozymes, allowing for convenient coating with tumor cell membranes to form a uniform tumor-targeted cascading enzymatic nanosystem (CFGM). This system promotes a cycle of tumor glucose depletion, reactive oxygen species (ROS) generation, and oxygen production, facilitating tumor-targeted starvation therapy (ST) and chemodynamic therapy (CDT). Notably, the semi-crystalline COF carrier within this system can degrade slowly under mildly acidic conditions, forming large aggregates that damage lysosomes and disrupt lysosomal autophagy, thereby eliminating the autophagy protection of cancer cells activated by the combined ST. This synergistic approach enhances the catalytic inhibition of tumors. Our research thus provides an alternative COF-based platform and strategy for effective cancer treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices