Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies
Sarah Maria van Tol Amaral Guerra , Letícia Cordeiro Koppe de França , Katriane Neto da Silva, Fabielly Scolari Grotto, Viviane Glaser
{"title":"Copper dyshomeostasis and its relationship to AMPK activation, mitochondrial dynamics, and biogenesis of mitochondria: A systematic review of in vivo studies","authors":"Sarah Maria van Tol Amaral Guerra , Letícia Cordeiro Koppe de França , Katriane Neto da Silva, Fabielly Scolari Grotto, Viviane Glaser","doi":"10.1016/j.jtemb.2024.127549","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively. Together with mitophagy (autophagy of mitochondria) and mitochondrial biogenesis, mitochondrial fusion and fission (denominated mitochondrial dynamics) determine the number of mitochondria in a cell. A master regulator of mitochondrial dynamics and biogenesis of new mitochondria is AMPK. Considering that both a decrease and an increase in copper levels can influence mitochondrial turnover, especially in diseases related to copper dyshomeostasis, the objective of this systematic review was to verify the current knowledge on the influence of copper homeostasis on AMPK activation, mitochondrial dynamics, and biogenesis of new mitochondria <em>in vivo</em>.</div></div><div><h3>Methods</h3><div>PubMed (MEDLINE), Embase, and Web of Science databases were used to search for articles in the literature. Data about the effects of a decrease or an increase in copper levels on the expression of proteins involved in mitochondrial dynamics or biogenesis, and data about AMPK and p-AMPK levels were extracted.</div></div><div><h3>Results</h3><div>Meta-analysis has demonstrated that high copper levels increase mitochondrial fission and inhibit mitochondrial fusion. Additionally, an increase in copper levels results in AMPK activation. Few studies have analyzed the effects of high copper levels on proteins related to mitochondrial biogenesis, as well as the impact of a decrease in this metal on mitochondrial dynamics and biogenesis, and on AMPK activation.</div></div><div><h3>Conclusions</h3><div>Despite the results gathered in this review, other studies are necessary to completely understand the role of copper in regulating AMPK activation, mitochondrial dynamics, and the biogenesis of new mitochondria, since the cell response to a copper dyshomeostasis could be different depending on the species and tissues analyzed.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127549"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X2400169X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Copper dyshomeostasis can be related to an increase in copper levels, resulting in toxicity, or to a decrease in tissues levels, impairing cuproenzyme activities. Inside cells, copper can be found in the cytoplasm and inside organelles, and the main organelle that compartmentalizes copper is the mitochondrion. This organelle can form networks and may fuse or fission from this, determining the mitochondrial fusion and fission processes, respectively. Together with mitophagy (autophagy of mitochondria) and mitochondrial biogenesis, mitochondrial fusion and fission (denominated mitochondrial dynamics) determine the number of mitochondria in a cell. A master regulator of mitochondrial dynamics and biogenesis of new mitochondria is AMPK. Considering that both a decrease and an increase in copper levels can influence mitochondrial turnover, especially in diseases related to copper dyshomeostasis, the objective of this systematic review was to verify the current knowledge on the influence of copper homeostasis on AMPK activation, mitochondrial dynamics, and biogenesis of new mitochondria in vivo.
Methods
PubMed (MEDLINE), Embase, and Web of Science databases were used to search for articles in the literature. Data about the effects of a decrease or an increase in copper levels on the expression of proteins involved in mitochondrial dynamics or biogenesis, and data about AMPK and p-AMPK levels were extracted.
Results
Meta-analysis has demonstrated that high copper levels increase mitochondrial fission and inhibit mitochondrial fusion. Additionally, an increase in copper levels results in AMPK activation. Few studies have analyzed the effects of high copper levels on proteins related to mitochondrial biogenesis, as well as the impact of a decrease in this metal on mitochondrial dynamics and biogenesis, and on AMPK activation.
Conclusions
Despite the results gathered in this review, other studies are necessary to completely understand the role of copper in regulating AMPK activation, mitochondrial dynamics, and the biogenesis of new mitochondria, since the cell response to a copper dyshomeostasis could be different depending on the species and tissues analyzed.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.