X I Hanqing, L I Xia, Zhang Ziyi, Cui Xiang, Jing Xianghong, Zhu Bing, Gao Xinyan
{"title":"Neuro- and immuno-modulation mediated by the cardiac sympathetic nerve: a novel insight into the anti-ischemic efficacy of acupuncture.","authors":"X I Hanqing, L I Xia, Zhang Ziyi, Cui Xiang, Jing Xianghong, Zhu Bing, Gao Xinyan","doi":"10.19852/j.cnki.jtcm.20240423.001","DOIUrl":null,"url":null,"abstract":"<p><p>Communication between sympathetic nerves and the immune system is a crucial and active process during myocardial ischemia (MI), as myocardial damage and inflammatory stimuli concurrently occur. Sympathetic nerves undergo structural and functional changes after MI, leading to adverse left ventricular (LV) remodeling and heart failure (HF). The complex inflammatory response to MI, including local myocardial anti-inflammatory repair and systemic immune reactions, plays a key role in adverse LV remodeling. Here, we review the progressive structural and electrophysiological remodeling of the LV and the involvement of sympathetic tone in complex and dynamic processes that are susceptible to MI pathological conditions. Acupuncture has been reported to effectively improve cardiac function, eliminate arrhythmia, and mitigate adverse LV remodeling <i>via</i> somatosensory regulation after MI. Moreover, acupuncture has an anti-inflammatory effect on the pathological process of myocardial ischemia. In this Review, we aim to summarize the involvement of sympathetic nerve activation in the neuro-immune modulation of structural and functional cardiac changes after MI. As a noninvasive method for sympathetic regulation, acupuncture is an ideal option because of its anti-ischemic efficacy. A better understanding of the neural circuitry that regulates cardiac function and immune responses following MI could reveal novel targets for acupuncture treatment.</p>","PeriodicalId":94119,"journal":{"name":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","volume":"44 5","pages":"1058-1066"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11462539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19852/j.cnki.jtcm.20240423.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Communication between sympathetic nerves and the immune system is a crucial and active process during myocardial ischemia (MI), as myocardial damage and inflammatory stimuli concurrently occur. Sympathetic nerves undergo structural and functional changes after MI, leading to adverse left ventricular (LV) remodeling and heart failure (HF). The complex inflammatory response to MI, including local myocardial anti-inflammatory repair and systemic immune reactions, plays a key role in adverse LV remodeling. Here, we review the progressive structural and electrophysiological remodeling of the LV and the involvement of sympathetic tone in complex and dynamic processes that are susceptible to MI pathological conditions. Acupuncture has been reported to effectively improve cardiac function, eliminate arrhythmia, and mitigate adverse LV remodeling via somatosensory regulation after MI. Moreover, acupuncture has an anti-inflammatory effect on the pathological process of myocardial ischemia. In this Review, we aim to summarize the involvement of sympathetic nerve activation in the neuro-immune modulation of structural and functional cardiac changes after MI. As a noninvasive method for sympathetic regulation, acupuncture is an ideal option because of its anti-ischemic efficacy. A better understanding of the neural circuitry that regulates cardiac function and immune responses following MI could reveal novel targets for acupuncture treatment.