Juan Yin, Zejie Wu, Heng Li, Bianli Cao, Wanzhi Wang
{"title":"Monitoring of mercury ion in environmental media and biological systems using a red emissive fluorescent probe with a large Stokes shift.","authors":"Juan Yin, Zejie Wu, Heng Li, Bianli Cao, Wanzhi Wang","doi":"10.1016/j.saa.2024.125272","DOIUrl":null,"url":null,"abstract":"<p><p>The development of practical fluorescent probe for detecting toxic mercury ions (Hg<sup>2+</sup>) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg<sup>2+</sup> both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg<sup>2+</sup> levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg<sup>2+</sup> under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"326 ","pages":"125272"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of practical fluorescent probe for detecting toxic mercury ions (Hg2+) is desirable for environmental assurance and public health. In this study, a new red emissive fluorescent probe (KJL) was designed and synthesized for monitoring trace Hg2+ both in vitro and in vivo with distinct features including ideal response rate (within 4 min), red emission (596 nm), large Stokes shift (162 nm), highly sensitivity (LOD = 4.79 nM) and excellent specificity. KJL also validated the good capability for accurately monitoring trace Hg2+ levels in actual samples (faucet water, drinking water, river water, lake water, urine and serum) and possessed the eye-catching ability in visualization of Hg2+ under environmental/biological conditions, which revealed the great potential of this red-emitting fluorescent probe for practical applications in complex environmental and biological systems.