Assessment of machine learning classifiers for predicting intraoperative blood transfusion in non-cardiac surgery.

Insun Park, Jae Hyon Park, Jongjin Yoon, Chang-Hoon Koo, Ah-Young Oh, Jin-Hee Kim, Jung-Hee Ryu
{"title":"Assessment of machine learning classifiers for predicting intraoperative blood transfusion in non-cardiac surgery.","authors":"Insun Park, Jae Hyon Park, Jongjin Yoon, Chang-Hoon Koo, Ah-Young Oh, Jin-Hee Kim, Jung-Hee Ryu","doi":"10.1016/j.tracli.2024.10.006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to develop a machine learning classifier for predicting intraoperative blood transfusion in non-cardiac surgeries.</p><p><strong>Methods: </strong>Preoperative data from 6255 patients were extracted from the VitalDB database, an open-source registry. The primary outcome was the area under the receiver operating characteristic (AUROC) curve of ML classifiers in predicting intraoperative blood transfusion, defined as the receipt of at least one unit of packed red blood cells. Five different machine learning algorithms including logistic regression, random forest, adaptive boosting, gradient boosting, and the extremely gradient boosting classifiers were used to construct a binary classifier for intraoperative blood transfusion, and their predictive abilities were compared.</p><p><strong>Results: </strong>337 (5%) patients received intraoperative blood transfusion. In the test-set, the logistic regression classifier demonstrated the highest AUROC (0.836, 95% CI, 0.795-0.876), followed by the gradient boosting classifier (0.810, 95% CI, 0.750-0.868), AdaBoost classifier (0.776, 95% CI, 0.722-0.829), random forest classifier (0.735, 95% CI, 0.698-0.771), and XGBoost classifier (0.721, 95% CI, 0.695-0.747). The logistic regression classifier showed a higher AUROC compared to that of a multivariable logistic regression model (0.836 vs. 0.623, P < 0.001). Among various parameters used to construct the logistic regression classifier, the top three most important features were operation time (0.999), preoperative serum hemoglobin level (0.785), and open surgery (0.530).</p><p><strong>Conclusion: </strong>We successfully developed various ML classifiers using readily available preoperative data to predict intraoperative transfusion in patients undergoing non-cardiac surgeries. In particular, the logistic regression classifier demonstrated the best performance in predicting intraoperative transfusion.</p>","PeriodicalId":94255,"journal":{"name":"Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.tracli.2024.10.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to develop a machine learning classifier for predicting intraoperative blood transfusion in non-cardiac surgeries.

Methods: Preoperative data from 6255 patients were extracted from the VitalDB database, an open-source registry. The primary outcome was the area under the receiver operating characteristic (AUROC) curve of ML classifiers in predicting intraoperative blood transfusion, defined as the receipt of at least one unit of packed red blood cells. Five different machine learning algorithms including logistic regression, random forest, adaptive boosting, gradient boosting, and the extremely gradient boosting classifiers were used to construct a binary classifier for intraoperative blood transfusion, and their predictive abilities were compared.

Results: 337 (5%) patients received intraoperative blood transfusion. In the test-set, the logistic regression classifier demonstrated the highest AUROC (0.836, 95% CI, 0.795-0.876), followed by the gradient boosting classifier (0.810, 95% CI, 0.750-0.868), AdaBoost classifier (0.776, 95% CI, 0.722-0.829), random forest classifier (0.735, 95% CI, 0.698-0.771), and XGBoost classifier (0.721, 95% CI, 0.695-0.747). The logistic regression classifier showed a higher AUROC compared to that of a multivariable logistic regression model (0.836 vs. 0.623, P < 0.001). Among various parameters used to construct the logistic regression classifier, the top three most important features were operation time (0.999), preoperative serum hemoglobin level (0.785), and open surgery (0.530).

Conclusion: We successfully developed various ML classifiers using readily available preoperative data to predict intraoperative transfusion in patients undergoing non-cardiac surgeries. In particular, the logistic regression classifier demonstrated the best performance in predicting intraoperative transfusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估预测非心脏手术术中输血的机器学习分类器。
背景:本研究旨在开发一种用于预测非心脏手术术中输血的机器学习分类器:本研究旨在开发一种用于预测非心脏手术术中输血的机器学习分类器:从开源注册数据库 VitalDB 数据库中提取了 6255 名患者的术前数据。主要结果是机器学习分类器预测术中输血的接收者操作特征曲线下面积(AUROC),术中输血定义为接受至少一个单位的包装红细胞。我们使用了五种不同的机器学习算法,包括逻辑回归、随机森林、自适应提升、梯度提升和极梯度提升分类器,构建了术中输血的二元分类器,并比较了它们的预测能力:结果:337 例(5%)患者接受了术中输血。在测试集中,逻辑回归分类器的 AUROC 最高(0.836,95% CI,0.795-0.876),其次是梯度提升分类器(0.810,95% CI,0.750-0.868)、AdaBoost 分类器(0.776,95% CI,0.722-0.829)、随机森林分类器(0.735,95% CI,0.698-0.771)和 XGBoost 分类器(0.721,95% CI,0.695-0.747)。与多变量逻辑回归模型相比,逻辑回归分类器的AUROC更高(0.836 vs. 0.623,P < 0.001)。在用于构建逻辑回归分类器的各种参数中,最重要的前三个特征是手术时间(0.999)、术前血清血红蛋白水平(0.785)和开放手术(0.530):我们利用现成的术前数据成功开发了多种 ML 分类器,用于预测非心脏手术患者的术中输血情况。尤其是逻辑回归分类器在预测术中输血方面表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial intelligence in medical information retrieval: a word of caution. Trends in new hepatitis C virus infections among repeat blood donors - Georgia, 2017-2023. Comparative Evaluation of Hematological Parameters and Instrument Performance in Single and Double Plateletpheresis Procedures Using Haemonetics MCS+ and Trima Accel Systems. Effect of platelet storage duration on platelet increment and clinical outcomes in critically ill patients - a randomised controlled trial. Developing a veno-venous extracorporeal membrane oxygenation program during the COVID-19 pandemic: don't forget to notify the blood bank.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1