Towards enhanced creativity in fashion: integrating generative models with hybrid intelligence.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2024-09-23 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1460217
Alexander Ryjov, Vagan Kazaryan, Andrey Golub, Alina Egorova
{"title":"Towards enhanced creativity in fashion: integrating generative models with hybrid intelligence.","authors":"Alexander Ryjov, Vagan Kazaryan, Andrey Golub, Alina Egorova","doi":"10.3389/frai.2024.1460217","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study explores the role and potential of large language models (LLMs) and generative intelligence in the fashion industry. These technologies are reshaping traditional methods of design, production, and retail, leading to innovation, product personalization, and enhanced customer interaction.</p><p><strong>Methods: </strong>Our research analyzes the current applications and limitations of LLMs in fashion, identifying challenges such as the need for better spatial understanding and design detail processing. We propose a hybrid intelligence approach to address these issues.</p><p><strong>Results: </strong>We find that while LLMs offer significant potential, their integration into fashion workflows requires improvements in understanding spatial parameters and creating tools for iterative design.</p><p><strong>Discussion: </strong>Future research should focus on overcoming these limitations and developing hybrid intelligence solutions to maximize the potential of LLMs in the fashion industry.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1460217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: This study explores the role and potential of large language models (LLMs) and generative intelligence in the fashion industry. These technologies are reshaping traditional methods of design, production, and retail, leading to innovation, product personalization, and enhanced customer interaction.

Methods: Our research analyzes the current applications and limitations of LLMs in fashion, identifying challenges such as the need for better spatial understanding and design detail processing. We propose a hybrid intelligence approach to address these issues.

Results: We find that while LLMs offer significant potential, their integration into fashion workflows requires improvements in understanding spatial parameters and creating tools for iterative design.

Discussion: Future research should focus on overcoming these limitations and developing hybrid intelligence solutions to maximize the potential of LLMs in the fashion industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强时尚创意:将生成模型与混合智能相结合。
简介本研究探讨了大型语言模型(LLM)和生成智能在时尚产业中的作用和潜力。这些技术正在重塑传统的设计、生产和零售方法,带来创新、产品个性化和增强的客户互动:我们的研究分析了当前 LLM 在时尚领域的应用和局限性,发现了一些挑战,如需要更好的空间理解和设计细节处理。我们提出了一种混合智能方法来解决这些问题:结果:我们发现,虽然 LLMs 具有巨大的潜力,但将其整合到时尚工作流程中需要改进对空间参数的理解,并创建用于迭代设计的工具:讨论:未来的研究应侧重于克服这些局限性和开发混合智能解决方案,以最大限度地发挥 LLM 在时尚产业中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Impact of hypertension on coronary artery plaques and FFR-CT in type 2 diabetes mellitus patients: evaluation utilizing artificial intelligence processed coronary computed tomography angiography. Using large language models to support pre-service teachers mathematical reasoning-an exploratory study on ChatGPT as an instrument for creating mathematical proofs in geometry. Prediction of unobserved bifurcation by unsupervised extraction of slowly time-varying system parameter dynamics from time series using reservoir computing. Enzyme catalytic efficiency prediction: employing convolutional neural networks and XGBoost. Heuristic machine learning approaches for identifying phishing threats across web and email platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1