Upconversion Phosphor-Driven Photodegradation of Plastics

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-10-22 DOI:10.1021/acs.nanolett.4c04138
Shimao Deng, Runzi Cao, Xinjie Wang, Yuanhao Zhou, Jiaxin Liang, Huan Tang, Xuezhen Feng, Songhe Yang, Yangzi Shangguan, Yang Li, Hong Chen
{"title":"Upconversion Phosphor-Driven Photodegradation of Plastics","authors":"Shimao Deng, Runzi Cao, Xinjie Wang, Yuanhao Zhou, Jiaxin Liang, Huan Tang, Xuezhen Feng, Songhe Yang, Yangzi Shangguan, Yang Li, Hong Chen","doi":"10.1021/acs.nanolett.4c04138","DOIUrl":null,"url":null,"abstract":"Plastic waste poses a profound threat to ecosystems and human health, necessitating novel strategies for effective degradation in nature. Here, we present a novel approach utilizing upconversion phosphors as additives to significantly accelerate plastic photodegradation in nature via enhancing ultraviolet (UV) radiation. Pr-doped Li<sub>2</sub>CaGeO<sub>4</sub> (LCGO:Pr) upconversion phosphors readily converting blue light into deep-UV radiation, dramatically improve photodegradation rates for polyethylene (PE) and polyethylene terephthalate (PET) microplastics. In situ spectroscopic studies show that upconversion fluorescence initiates the photophysical cleavage of C–C and C–O bonds in the backbones of PE and PET, resulting in plastic degradation. Moreover, incorporating LCGO:Pr into polypropylene (PP) sheets realizes markedly enhanced photodamage, with the cracking area increasing by nearly 38-fold under simulated sunlight for 10 days. This underscores the potential of employing this approach for the construction of light-driven destructible polymers. Further optimization and exploration of material compatibility hold promise for developing sustainable photodegradable plastics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04138","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic waste poses a profound threat to ecosystems and human health, necessitating novel strategies for effective degradation in nature. Here, we present a novel approach utilizing upconversion phosphors as additives to significantly accelerate plastic photodegradation in nature via enhancing ultraviolet (UV) radiation. Pr-doped Li2CaGeO4 (LCGO:Pr) upconversion phosphors readily converting blue light into deep-UV radiation, dramatically improve photodegradation rates for polyethylene (PE) and polyethylene terephthalate (PET) microplastics. In situ spectroscopic studies show that upconversion fluorescence initiates the photophysical cleavage of C–C and C–O bonds in the backbones of PE and PET, resulting in plastic degradation. Moreover, incorporating LCGO:Pr into polypropylene (PP) sheets realizes markedly enhanced photodamage, with the cracking area increasing by nearly 38-fold under simulated sunlight for 10 days. This underscores the potential of employing this approach for the construction of light-driven destructible polymers. Further optimization and exploration of material compatibility hold promise for developing sustainable photodegradable plastics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
塑料废弃物对生态系统和人类健康构成了深远的威胁,因此有必要采取新颖的策略在自然界中进行有效降解。在这里,我们提出了一种利用上转换荧光粉作为添加剂的新方法,通过增强紫外线(UV)辐射来显著加速塑料在自然界中的光降解。掺杂 Pr 的 Li2CaGeO4(LCGO:Pr)上转换荧光粉能轻易地将蓝光转化为深紫外辐射,从而显著提高聚乙烯(PE)和聚对苯二甲酸乙二酯(PET)微塑料的光降解率。原位光谱研究表明,上转换荧光会引发聚乙烯和聚对苯二甲酸乙二醇酯骨架中 C-C 和 C-O 键的光物理裂解,从而导致塑料降解。此外,在聚丙烯(PP)片材中加入 LCGO:Pr 能显著增强光破坏效果,在模拟阳光下 10 天的开裂面积增加了近 38 倍。这凸显了采用这种方法制造光驱动可破坏聚合物的潜力。进一步优化和探索材料的兼容性为开发可持续光降解塑料带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Superconducting Boride Nb2IrB2 with Variable and Tunable Stacking Behaviors of Two-Dimensional [Nb-Ir-Nb] Triangular Lattices. Evidence for π-Shifted Cooper Quartets and Few-Mode Transport in PbTe Nanowire Three-Terminal Josephson Junctions An Mn-Enriched Interfacial Layer for Reversible Aqueous Mn Metal Batteries Upconversion Phosphor-Driven Photodegradation of Plastics Cryogels Composites: Recent Improvement in Bone Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1