Electron-withdrawing effect of polyoxometalates in Cu(I)-based metal–organic frameworks for enhanced azide-alkyne “click” reaction

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-10-22 DOI:10.1016/j.jcat.2024.115818
Bing-Bing Lu , Ji-Qiang Guan , Yu-Tong Wu , Si-Yi An , Ying Fu , Fei Ye
{"title":"Electron-withdrawing effect of polyoxometalates in Cu(I)-based metal–organic frameworks for enhanced azide-alkyne “click” reaction","authors":"Bing-Bing Lu ,&nbsp;Ji-Qiang Guan ,&nbsp;Yu-Tong Wu ,&nbsp;Si-Yi An ,&nbsp;Ying Fu ,&nbsp;Fei Ye","doi":"10.1016/j.jcat.2024.115818","DOIUrl":null,"url":null,"abstract":"<div><div>Boosting the nucleophilicity of Cu(I) sites is an essential strategy to enhance the efficiency of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In this work, a Lindquist-type polyoxometalate (POM)-based metal–organic framework, [Cu<sup>I</sup><sub>4</sub>(W<sub>6</sub>O<sub>19</sub>)<sub>2</sub>(L)]·2H<sub>2</sub>O (NEAU-1), was synthesized via an in-situ solvothermal method. Single-crystal X-ray diffraction results reveal that NEAU-1 exhibits a sandwich structure, with POMs intercalated between the two-dimensional layers formed by resorcin[4]arene ligands and Cu(I) ions. NEAU-1 possesses abundant Cu(I) active sites and high chemical stability, making it an effective heterogeneous catalyst for the CuAAC reaction. More importantly, the presence of POMs effectively reduces the electron cloud density around Cu(I) sites, significantly lowering the energy barrier for the formation of copper-acetylide compounds and facilitating subsequent nucleophilic reactions. The synergistic catalytic effect of POMs and Cu(I) can achieve a conversion rate of over 99 % for benzyl azide and phenylacetylene within 40 min. This work presents a sustainable molecular-level strategy to enhance the activity of the CuAAC reaction.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115818"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724005311","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Boosting the nucleophilicity of Cu(I) sites is an essential strategy to enhance the efficiency of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. In this work, a Lindquist-type polyoxometalate (POM)-based metal–organic framework, [CuI4(W6O19)2(L)]·2H2O (NEAU-1), was synthesized via an in-situ solvothermal method. Single-crystal X-ray diffraction results reveal that NEAU-1 exhibits a sandwich structure, with POMs intercalated between the two-dimensional layers formed by resorcin[4]arene ligands and Cu(I) ions. NEAU-1 possesses abundant Cu(I) active sites and high chemical stability, making it an effective heterogeneous catalyst for the CuAAC reaction. More importantly, the presence of POMs effectively reduces the electron cloud density around Cu(I) sites, significantly lowering the energy barrier for the formation of copper-acetylide compounds and facilitating subsequent nucleophilic reactions. The synergistic catalytic effect of POMs and Cu(I) can achieve a conversion rate of over 99 % for benzyl azide and phenylacetylene within 40 min. This work presents a sustainable molecular-level strategy to enhance the activity of the CuAAC reaction.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu(I)-based metal-organic frameworks(铜铟金属有机框架)中多氧金属酸盐的电子吸附效应促进叠氮-炔烃 "点击 "反应
提高 Cu(I)位点的亲核性是提高 Cu(I)催化的叠氮-炔环加成反应(CuAAC)效率的基本策略。本研究采用原位溶热法合成了一种基于林奎斯特型聚氧化金属(POM)的金属有机框架[CuI4(W6O19)2(L)]-2H2O(NEAU-1)。单晶 X 射线衍射结果表明,NEAU-1 呈夹层结构,在间苯二酚[4]炔配体和铜(I)离子形成的二维层之间夹有 POM。NEAU-1 具有丰富的 Cu(I) 活性位点和较高的化学稳定性,使其成为 CuAAC 反应的有效异相催化剂。更重要的是,POMs 的存在有效降低了 Cu(I)位点周围的电子云密度,显著降低了形成铜乙酰化合物的能障,促进了后续的亲核反应。在 POMs 和 Cu(I) 的协同催化作用下,苄基叠氮化物和苯乙炔在 40 分钟内的转化率可达 99% 以上。这项工作提出了一种可持续的分子级策略,以提高 CuAAC 反应的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Selenium-modulated Pt/Al2O3 electronic structure induces deactivation during catalytic CO oxidation Enhanced metal-support interaction over Pd-Au/TiO2 catalysts for vinyl acetate synthesis Access to cyclobutane–fused dihydrobenzothiophenes via gold–mediated photocatalyzed [2+2]–cycloaddition reactions Homogeneous and heterogeneous selective oxidation of ethyl lactate regulated by a novel vanadium complex Unravelling the mechanistic ‘Black Box’ of heterogeneous condensation reactions catalyzed by aminosilicas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1