GRESS: Grouping Belief-Based Deep Contrastive Subspace Clustering

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-10-21 DOI:10.1109/TCYB.2024.3475034
Yujie Chen;Wenhui Wu;Le Ou-Yang;Ran Wang;Sam Kwong
{"title":"GRESS: Grouping Belief-Based Deep Contrastive Subspace Clustering","authors":"Yujie Chen;Wenhui Wu;Le Ou-Yang;Ran Wang;Sam Kwong","doi":"10.1109/TCYB.2024.3475034","DOIUrl":null,"url":null,"abstract":"The self-expressive coefficient plays a crucial role in the self-expressiveness-based subspace clustering method. To enhance the precision of the self-expressive coefficient, we propose a novel deep subspace clustering method, named grouping belief-based deep contrastive subspace clustering (GRESS), which integrates the clustering information and higher-order relationship into the coefficient matrix. Specifically, we develop a deep contrastive subspace clustering module to enhance the learning of both self-expressive coefficients and cluster representations simultaneously. This approach enables the derivation of relatively noiseless self-expressive similarities and cluster-based similarities. To enable interaction between these two types of similarities, we propose a unique grouping belief-based affinity refinement module. This module leverages grouping belief to uncover the higher-order relationships within the similarity matrix, and integrates the well-designed noisy similarity suppression and similarity increment regularization to eliminate redundant connections while complete absent information. Extensive experimental results on four benchmark datasets validate the superiority of our proposed method GRESS over several state-of-the-art methods.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"148-160"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726563/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The self-expressive coefficient plays a crucial role in the self-expressiveness-based subspace clustering method. To enhance the precision of the self-expressive coefficient, we propose a novel deep subspace clustering method, named grouping belief-based deep contrastive subspace clustering (GRESS), which integrates the clustering information and higher-order relationship into the coefficient matrix. Specifically, we develop a deep contrastive subspace clustering module to enhance the learning of both self-expressive coefficients and cluster representations simultaneously. This approach enables the derivation of relatively noiseless self-expressive similarities and cluster-based similarities. To enable interaction between these two types of similarities, we propose a unique grouping belief-based affinity refinement module. This module leverages grouping belief to uncover the higher-order relationships within the similarity matrix, and integrates the well-designed noisy similarity suppression and similarity increment regularization to eliminate redundant connections while complete absent information. Extensive experimental results on four benchmark datasets validate the superiority of our proposed method GRESS over several state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GRESS:基于分组信念的深度对比子空间聚类
自表达系数在基于自表达的子空间聚类方法中起着至关重要的作用。为了提高自表达系数的精度,提出了一种新的深度子空间聚类方法——基于分组信念的深度对比子空间聚类(GRESS),该方法将聚类信息和高阶关系集成到系数矩阵中。具体而言,我们开发了一个深度对比子空间聚类模块,以同时增强自表达系数和聚类表示的学习。这种方法能够推导出相对无噪声的自我表达相似性和基于聚类的相似性。为了实现这两种类型的相似性之间的交互,我们提出了一个独特的基于分组信念的亲和改进模块。该模块利用分组信念揭示相似矩阵内的高阶关系,并结合精心设计的噪声相似度抑制和相似度增量正则化,消除冗余连接,完成缺失信息。在四个基准数据集上的大量实验结果验证了我们提出的方法GRESS优于几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Integral Reinforcement Learning-Based Dynamic Event-Triggered Nonzero-Sum Games of USVs Adaptive Event-Triggered Control Combined With High-Order Backstepping for Pure Feedback Nonlinear Systems Barycentric Coordinate-Based Distributed Localization for Wireless Sensor Networks Under False-Data-Injection Attacks Generation of Granular-Balls for Clustering Based on the Principle of Justifiable Granularity Sampled-Data Stochastic Stabilization of Markovian Jump Systems via an Optimizing Mode-Separation Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1