Keefe Mitman, Michael Boyle, Leo C Stein, Nils Deppe, Lawrence E Kidder, Jordan Moxon, Harald P Pfeiffer, Mark A Scheel, Saul A Teukolsky, William Throwe and Nils L Vu
{"title":"A review of gravitational memory and BMS frame fixing in numerical relativity","authors":"Keefe Mitman, Michael Boyle, Leo C Stein, Nils Deppe, Lawrence E Kidder, Jordan Moxon, Harald P Pfeiffer, Mark A Scheel, Saul A Teukolsky, William Throwe and Nils L Vu","doi":"10.1088/1361-6382/ad83c2","DOIUrl":null,"url":null,"abstract":"Gravitational memory effects and the BMS freedoms exhibited at future null infinity have recently been resolved and utilized in numerical relativity simulations. With this, gravitational wave models and our understanding of the fundamental nature of general relativity have been vastly improved. In this paper, we review the history and intuition behind memory effects and BMS symmetries, how they manifest in gravitational waves, and how controlling the infinite number of BMS freedoms of numerical relativity simulations can crucially improve the waveform models that are used by gravitational wave detectors. We reiterate the fact that, with memory effects and BMS symmetries, not only can these next-generation numerical waveforms be used to observe never-before-seen physics, but they can also be used to test GR and learn new astrophysical information about our Universe.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"27 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad83c2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational memory effects and the BMS freedoms exhibited at future null infinity have recently been resolved and utilized in numerical relativity simulations. With this, gravitational wave models and our understanding of the fundamental nature of general relativity have been vastly improved. In this paper, we review the history and intuition behind memory effects and BMS symmetries, how they manifest in gravitational waves, and how controlling the infinite number of BMS freedoms of numerical relativity simulations can crucially improve the waveform models that are used by gravitational wave detectors. We reiterate the fact that, with memory effects and BMS symmetries, not only can these next-generation numerical waveforms be used to observe never-before-seen physics, but they can also be used to test GR and learn new astrophysical information about our Universe.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.