Timon Schapeler, Robert Schade, Michael Lass, Christian Plessl and Tim J Bartley
{"title":"Scalable quantum detector tomography by high-performance computing","authors":"Timon Schapeler, Robert Schade, Michael Lass, Christian Plessl and Tim J Bartley","doi":"10.1088/2058-9565/ad8511","DOIUrl":null,"url":null,"abstract":"At large scales, quantum systems may become advantageous over their classical counterparts at performing certain tasks. Developing tools to analyze these systems at the relevant scales, in a manner consistent with quantum mechanics, is therefore critical to benchmarking performance and characterizing their operation. While classical computational approaches cannot perform like-for-like computations of quantum systems beyond a certain scale, classical high-performance computing (HPC) may nevertheless be useful for precisely these characterization and certification tasks. By developing open-source customized algorithms using HPC, we perform quantum tomography on a megascale quantum photonic detector covering a Hilbert space of 106. This requires finding 108 elements of the matrix corresponding to the positive operator valued measure, the quantum description of the detector, and is achieved in minutes of computation time. Moreover, by exploiting the structure of the problem, we achieve highly efficient parallel scaling, paving the way for quantum objects up to a system size of 1012 elements to be reconstructed using this method. In general, this shows that a consistent quantum mechanical description of quantum phenomena is applicable at everyday scales. More concretely, this enables the reconstruction of large-scale quantum sources, processes and detectors used in computation and sampling tasks, which may be necessary to prove their nonclassical character or quantum computational advantage.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad8511","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At large scales, quantum systems may become advantageous over their classical counterparts at performing certain tasks. Developing tools to analyze these systems at the relevant scales, in a manner consistent with quantum mechanics, is therefore critical to benchmarking performance and characterizing their operation. While classical computational approaches cannot perform like-for-like computations of quantum systems beyond a certain scale, classical high-performance computing (HPC) may nevertheless be useful for precisely these characterization and certification tasks. By developing open-source customized algorithms using HPC, we perform quantum tomography on a megascale quantum photonic detector covering a Hilbert space of 106. This requires finding 108 elements of the matrix corresponding to the positive operator valued measure, the quantum description of the detector, and is achieved in minutes of computation time. Moreover, by exploiting the structure of the problem, we achieve highly efficient parallel scaling, paving the way for quantum objects up to a system size of 1012 elements to be reconstructed using this method. In general, this shows that a consistent quantum mechanical description of quantum phenomena is applicable at everyday scales. More concretely, this enables the reconstruction of large-scale quantum sources, processes and detectors used in computation and sampling tasks, which may be necessary to prove their nonclassical character or quantum computational advantage.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.