Xiaopo Zheng, Youying Guo, Zhongliang Zhou, Tianxing Wang
{"title":"Improvements in land surface temperature and emissivity retrieval from Landsat-9 thermal infrared data","authors":"Xiaopo Zheng, Youying Guo, Zhongliang Zhou, Tianxing Wang","doi":"10.1016/j.rse.2024.114471","DOIUrl":null,"url":null,"abstract":"<div><div>Land surface temperature (LST) is the key parameter for characterizing the water and energy balance of the Earth’ surface. At present, thermal infrared (TIR) remote sensing provides the most efficient way to obtain accurate LST regionally and globally. Among existing satellites, the Landsat-9 could observe the Earth's surface via two TIR channels, making it possible to generate the global LST product with a remarkable spatial resolution of 100 m. Currently, the single channel method and split window method generally were used to recover LST from the Landsat-9 TIR measurements. However, accurate land surface emissivity (LSE) is needed in both algorithms, which is very difficult to obtain at the pixel scale. To overcome this issue, an improved LST and LSE separation method was proposed in this study. Firstly, the traditional water vapor scaling (WVS) method was refined to address the atmospheric effects in the satellite measurements. Then, the traditional temperature and emissivity separation method (TES) was adapted to the Landsat-9 observations with only two TIR channels. Finally, an iterative process was designed to retrieve the LST and LSE simultaneously. Validations using in-situ measured LST indicated that the root mean square error (RMSE) of the retrieved LST was around 2.92 K, outperforming the official Landsat-9 LST product with an RMSE of about 4.20 K. Taking ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) products as the references, the RMSE of our retrieved LST and LSE was found to be < 1.55 K and < 0.015, respectively. Overall, conclusions can be made that the proposed method was able to retrieve accurate LST and LSE simultaneously from the Landsat-9 TIR measurements with high spatial resolution, which may greatly facilitate the relevant applications.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114471"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004978","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Land surface temperature (LST) is the key parameter for characterizing the water and energy balance of the Earth’ surface. At present, thermal infrared (TIR) remote sensing provides the most efficient way to obtain accurate LST regionally and globally. Among existing satellites, the Landsat-9 could observe the Earth's surface via two TIR channels, making it possible to generate the global LST product with a remarkable spatial resolution of 100 m. Currently, the single channel method and split window method generally were used to recover LST from the Landsat-9 TIR measurements. However, accurate land surface emissivity (LSE) is needed in both algorithms, which is very difficult to obtain at the pixel scale. To overcome this issue, an improved LST and LSE separation method was proposed in this study. Firstly, the traditional water vapor scaling (WVS) method was refined to address the atmospheric effects in the satellite measurements. Then, the traditional temperature and emissivity separation method (TES) was adapted to the Landsat-9 observations with only two TIR channels. Finally, an iterative process was designed to retrieve the LST and LSE simultaneously. Validations using in-situ measured LST indicated that the root mean square error (RMSE) of the retrieved LST was around 2.92 K, outperforming the official Landsat-9 LST product with an RMSE of about 4.20 K. Taking ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) products as the references, the RMSE of our retrieved LST and LSE was found to be < 1.55 K and < 0.015, respectively. Overall, conclusions can be made that the proposed method was able to retrieve accurate LST and LSE simultaneously from the Landsat-9 TIR measurements with high spatial resolution, which may greatly facilitate the relevant applications.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.