“V”-Shaped Changing Electronic Performance of Iodinene-Based Nanoflakes as a Function of Width

IF 4.3 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Pub Date : 2024-10-22 DOI:10.1021/acs.inorgchem.4c02894
Rukai Liu, Jie Li, Kun Liu, Artem Okulov
{"title":"“V”-Shaped Changing Electronic Performance of Iodinene-Based Nanoflakes as a Function of Width","authors":"Rukai Liu, Jie Li, Kun Liu, Artem Okulov","doi":"10.1021/acs.inorgchem.4c02894","DOIUrl":null,"url":null,"abstract":"Special structures and prominent performance make 2D iodinene more appealing and valuable at the molecular level. Here, new-type electronic devices have been constructed with iodinene-based nanoflakes in different sizes and are theoretically studied for electronic transport properties. Our findings reveal that iodinene-based nanoflakes possess great electron transport suppression, achieving the same function as SiO<sub>2</sub> on single molecule scale. Such transport suppression shows surprisingly nonlinear “V”-shaped trend with the width of the iodinene-based nanoflake. The medium-width iodinene-based nanoflake exhibits the strongest electron transport suppression, while the narrowest and widest ones display the largest electron transmission coefficients due to delocalized transmission eigenstates. Essentially, the weakest electron transport originates from an extremely small DOS and wide HOMO–LUMO gap. Specifically, increasing the width would diminish the extension of electronic states for the dominant transport orbitals, resulting in more butterfly-like electronic states. In non-equilibrium, negative differential resistance effect can be observed in iodinene-based devices, caused by the weakening and staying away from the Fermi level of transmission peaks influenced by the bias. Our findings provide insights into the relationship between the width of iodinene-based nanoflake and electronic transport properties, and lay a foundation in the device design and applications in molecular insulators and controllable-functional devices.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c02894","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Special structures and prominent performance make 2D iodinene more appealing and valuable at the molecular level. Here, new-type electronic devices have been constructed with iodinene-based nanoflakes in different sizes and are theoretically studied for electronic transport properties. Our findings reveal that iodinene-based nanoflakes possess great electron transport suppression, achieving the same function as SiO2 on single molecule scale. Such transport suppression shows surprisingly nonlinear “V”-shaped trend with the width of the iodinene-based nanoflake. The medium-width iodinene-based nanoflake exhibits the strongest electron transport suppression, while the narrowest and widest ones display the largest electron transmission coefficients due to delocalized transmission eigenstates. Essentially, the weakest electron transport originates from an extremely small DOS and wide HOMO–LUMO gap. Specifically, increasing the width would diminish the extension of electronic states for the dominant transport orbitals, resulting in more butterfly-like electronic states. In non-equilibrium, negative differential resistance effect can be observed in iodinene-based devices, caused by the weakening and staying away from the Fermi level of transmission peaks influenced by the bias. Our findings provide insights into the relationship between the width of iodinene-based nanoflake and electronic transport properties, and lay a foundation in the device design and applications in molecular insulators and controllable-functional devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
期刊最新文献
Ir Doping Modulates the Electronic Structure of Flower-Shaped Phosphides for Water Oxidation. The H2Sxmacropa Series: Increasing the Chemical Softness of H2macropa with Sulfur Atoms to Chelate Radiometals [213Bi]Bi3+ and [203Pb]Pb2+ for Radiopharmaceutical Applications. Layer-By-Layer Magnetic Ordering via Idle Spins and the Optical Signature of Jahn–Teller Cr2+ Ions in Sr2Cr(PO4)2 Ultralong Room-Temperature Phosphorescence in Ca(II) Metal–Organic Frameworks Based on Nicotinic Acid Ligands Ferrocene Chalcone Enhanced Cyclotriphosphazene Photodiode Systems via Click Chemistry: Their Synthesis, Electrical, and Photophysical Properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1