Unique Electron Donor–Acceptor Complex Conformation Ensures Both the Efficiency and Enantioselectivity of Photoinduced Radical Cyclization in a Non-natural Photoenzyme

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL ACS Catalysis Pub Date : 2024-10-23 DOI:10.1021/acscatal.4c05046
Matteo Capone, Gianluca Dell’Orletta, Claire G. Page, Todd K. Hyster, Gregory D. Scholes, Isabella Daidone
{"title":"Unique Electron Donor–Acceptor Complex Conformation Ensures Both the Efficiency and Enantioselectivity of Photoinduced Radical Cyclization in a Non-natural Photoenzyme","authors":"Matteo Capone, Gianluca Dell’Orletta, Claire G. Page, Todd K. Hyster, Gregory D. Scholes, Isabella Daidone","doi":"10.1021/acscatal.4c05046","DOIUrl":null,"url":null,"abstract":"Non-natural photoenzymatic catalysis exploits active site tunability for stereoselective radical reactions. In flavoproteins, light absorption promotes the excitation of an electron donor–acceptor (EDA) complex formed between the reduced flavin cofactor and a substrate (α-chloroacetamide in this case). This can trigger chloride mesolytic cleavage, leading to radical cyclization (forming a γ-lactam), or revert to the ground state. While this strategy is feasible using a broad UV/visible/near-infrared spectrum, the low quantum yield presents a significant challenge. Using a multiscale computational approach, we elucidate the mechanisms of the light-driven radical initiation step catalyzed by a Gluconobacter oxydans “ene”-reductase mutant (GluER-G6). The low experimental quantum yield stems from the limited population (<10%) of EDA complexes with a charge transfer state competent for mesolytic cleavage. Accessibility of this state requires substrate bending positioning the chlorine atom near the styrenic group. A subset of these reactive conformers exhibits enhanced cyan/red absorption due to the optimal C–Cl bond alignment with the flavin. Engineering a GluER variant to stabilize this conformation is expected to significantly enhance catalytic efficiency when using cyan/red light. The identified reactive intermediates possess the correct prochirality for enantioselective cyclization. Our findings show that ground-state conformational selection of these EDA complex conformers governs both light-activated mesolytic cleavage and enantioselectivity.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Non-natural photoenzymatic catalysis exploits active site tunability for stereoselective radical reactions. In flavoproteins, light absorption promotes the excitation of an electron donor–acceptor (EDA) complex formed between the reduced flavin cofactor and a substrate (α-chloroacetamide in this case). This can trigger chloride mesolytic cleavage, leading to radical cyclization (forming a γ-lactam), or revert to the ground state. While this strategy is feasible using a broad UV/visible/near-infrared spectrum, the low quantum yield presents a significant challenge. Using a multiscale computational approach, we elucidate the mechanisms of the light-driven radical initiation step catalyzed by a Gluconobacter oxydans “ene”-reductase mutant (GluER-G6). The low experimental quantum yield stems from the limited population (<10%) of EDA complexes with a charge transfer state competent for mesolytic cleavage. Accessibility of this state requires substrate bending positioning the chlorine atom near the styrenic group. A subset of these reactive conformers exhibits enhanced cyan/red absorption due to the optimal C–Cl bond alignment with the flavin. Engineering a GluER variant to stabilize this conformation is expected to significantly enhance catalytic efficiency when using cyan/red light. The identified reactive intermediates possess the correct prochirality for enantioselective cyclization. Our findings show that ground-state conformational selection of these EDA complex conformers governs both light-activated mesolytic cleavage and enantioselectivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
期刊最新文献
Modulating CO2 Electroreduction Activity on Mo2C and Promoting C2 Product by Grain Boundary Engineering: Insights from First-Principles Calculations Variable Mechanisms for Cobalt-Catalyzed Alkyne Dimerization Pinpointed by Quasi-Classical Trajectory Simulations Autocatalytic Activation of a Ruthenium-PNN-Pincer Hydrogenation Catalyst Unique Electron Donor–Acceptor Complex Conformation Ensures Both the Efficiency and Enantioselectivity of Photoinduced Radical Cyclization in a Non-natural Photoenzyme Functional Nucleic Acid Enzymes: Nucleic Acid-Based Catalytic Factories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1