{"title":"Membrane-bound IL-7 immobilized by the CD8 transmembrane region improves efficacy of CD19 CAR-T cell therapy","authors":"Chaoting Zhang, Ting Liu, Shance Li, Xia Teng, Yuge Zhu, Guanyu Zhang, Huimin Xie, Kang Sun, Jiaxin Tu, Wenjun Yang, Zheming Lu","doi":"10.1186/s12943-024-02154-0","DOIUrl":null,"url":null,"abstract":"Enhancing the efficacy of CD19 CAR-T cell therapy can significantly improve patient outcomes by reducing relapse rates in CD19 + B cell malignancies. Exogenous or transgenic cytokines are often used to boost the expansion and durability of CAR-T cells but pose risks of severe toxicities. A promising approach to address these limitations is to immobilize cytokines on the surface of CAR-T cells using transmembrane (TM) anchor domains. Given IL-7 can enhance T-cell proliferation and antitumor activity, our study developed membrane-bound IL-7 constructs using different TM anchor domains (CD8, CD28 and B7-1). We primarily found that the CD8 TM provided superior anchoring for IL-7 compared to CD28 and B7-1. Moreover, the IL-7 construct with a CD8 TM (IL7/CD8) enhanced naïve T cell proliferation and effector functions, and improved the in vitro and in vivo antitumor activity of CD19 CAR-T cells. Importantly, although IL7/CD8 could promote T-cell proliferation, it did not sustain long-term autonomous expansion, which could ensure the safety of CD19 CAR-T cells expressing IL7/CD8 in clinical applications. Collectively, the IL7/CD8 construct represents a promising strategy for enhancing the therapeutic potential of CD19 CAR-T cell therapy.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":null,"pages":null},"PeriodicalIF":27.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-024-02154-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing the efficacy of CD19 CAR-T cell therapy can significantly improve patient outcomes by reducing relapse rates in CD19 + B cell malignancies. Exogenous or transgenic cytokines are often used to boost the expansion and durability of CAR-T cells but pose risks of severe toxicities. A promising approach to address these limitations is to immobilize cytokines on the surface of CAR-T cells using transmembrane (TM) anchor domains. Given IL-7 can enhance T-cell proliferation and antitumor activity, our study developed membrane-bound IL-7 constructs using different TM anchor domains (CD8, CD28 and B7-1). We primarily found that the CD8 TM provided superior anchoring for IL-7 compared to CD28 and B7-1. Moreover, the IL-7 construct with a CD8 TM (IL7/CD8) enhanced naïve T cell proliferation and effector functions, and improved the in vitro and in vivo antitumor activity of CD19 CAR-T cells. Importantly, although IL7/CD8 could promote T-cell proliferation, it did not sustain long-term autonomous expansion, which could ensure the safety of CD19 CAR-T cells expressing IL7/CD8 in clinical applications. Collectively, the IL7/CD8 construct represents a promising strategy for enhancing the therapeutic potential of CD19 CAR-T cell therapy.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.