{"title":"Modeling Sparse Graph Sequences and Signals Using Generalized Graphons","authors":"Feng Ji;Xingchao Jian;Wee Peng Tay","doi":"10.1109/TSP.2024.3482350","DOIUrl":null,"url":null,"abstract":"Graphons are limit objects of sequences of graphs and are used to analyze the behavior of large graphs. Recently, graphon signal processing has been developed to study signal processing on large graphs. A major limitation of this approach is that any sparse sequence of graphs inevitably converges to the zero graphon, rendering the resulting signal processing theory trivial and inadequate for sparse graph sequences. To overcome this limitation, we propose a new signal processing framework that leverages the concept of generalized graphons and introduces the stretched cut distance as a measure to compare these graphons. Our framework focuses on the sampling of graph sequences from generalized graphons and explores the convergence properties of associated operators, spectra, and signals. Our signal processing framework provides a comprehensive approach to analyzing and processing signals on graph sequences, even if they are sparse. Finally, we discuss the practical implications of our theory for real-world large networks through numerical experiments.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"5048-5064"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10726916/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Graphons are limit objects of sequences of graphs and are used to analyze the behavior of large graphs. Recently, graphon signal processing has been developed to study signal processing on large graphs. A major limitation of this approach is that any sparse sequence of graphs inevitably converges to the zero graphon, rendering the resulting signal processing theory trivial and inadequate for sparse graph sequences. To overcome this limitation, we propose a new signal processing framework that leverages the concept of generalized graphons and introduces the stretched cut distance as a measure to compare these graphons. Our framework focuses on the sampling of graph sequences from generalized graphons and explores the convergence properties of associated operators, spectra, and signals. Our signal processing framework provides a comprehensive approach to analyzing and processing signals on graph sequences, even if they are sparse. Finally, we discuss the practical implications of our theory for real-world large networks through numerical experiments.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.