New Multiblock Copolymers Containing Quaternary Ammonium Groups with Ultramicroporous Structure for High-Temperature Proton Exchange Membrane Fuel Cells
Binghui Liu, Qian Liu, Yang Pang, Tong Mu, Chengji Zhao
{"title":"New Multiblock Copolymers Containing Quaternary Ammonium Groups with Ultramicroporous Structure for High-Temperature Proton Exchange Membrane Fuel Cells","authors":"Binghui Liu, Qian Liu, Yang Pang, Tong Mu, Chengji Zhao","doi":"10.1021/acs.macromol.4c02047","DOIUrl":null,"url":null,"abstract":"Polybenzimidazole (PBI) exhibits considerable advantages as a leading membrane material for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, their harsh synthesis conditions and high processing costs have greatly restricted the large-scale commercialization of HT-PEMFCs. Therefore, developing high-performance and durable membrane materials as alternatives to PBI has been recognized as the key technical challenge for the advancement of HT-PEMFC technology. In this study, a series of novel multiblock copolymers QPSBI-<i>b</i>-xTMA, consisting of acidophobic pentafluorophenyl, acidophilic quaternary ammonium groups, and high free-volume spirobisindane, were synthesized by a straightforward polymerization process involving two kinds of low-molecular-weight oligomers with different structures. The resulting multiblock membranes QPSBI-<i>b</i>-xTMA demonstrate well-defined microporous properties, and the PA-doped membranes exhibit a microphase separation structure, which effectively facilitates proton conduction (75.45 mS cm<sup>–1</sup>@200 °C). The HT-PEMFCs based on the QPSBI-<i>b</i>-xTMA/PA membrane can operate efficiently within the temperature range of 160–220 °C, achieving a high peak power density of 0.84 W cm<sup>–2</sup> without external pressure and humidity. Notably, owing to the siphoning effect of the micropores and the strong quaternary ammonium-biphosphate ion pairs, the fuel cell exhibits a stable performance at a high current density of 0.5 A cm<sup>–2</sup> at 160 °C, with a minimal voltage degradation rate of merely 4.7 μV h<sup>–1</sup>. Thus, the newly developed QPSBI-<i>b</i>-<i>x</i>TMA/PA materials present a promising avenue for HT-PEMFC applications.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"93 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polybenzimidazole (PBI) exhibits considerable advantages as a leading membrane material for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, their harsh synthesis conditions and high processing costs have greatly restricted the large-scale commercialization of HT-PEMFCs. Therefore, developing high-performance and durable membrane materials as alternatives to PBI has been recognized as the key technical challenge for the advancement of HT-PEMFC technology. In this study, a series of novel multiblock copolymers QPSBI-b-xTMA, consisting of acidophobic pentafluorophenyl, acidophilic quaternary ammonium groups, and high free-volume spirobisindane, were synthesized by a straightforward polymerization process involving two kinds of low-molecular-weight oligomers with different structures. The resulting multiblock membranes QPSBI-b-xTMA demonstrate well-defined microporous properties, and the PA-doped membranes exhibit a microphase separation structure, which effectively facilitates proton conduction (75.45 mS cm–1@200 °C). The HT-PEMFCs based on the QPSBI-b-xTMA/PA membrane can operate efficiently within the temperature range of 160–220 °C, achieving a high peak power density of 0.84 W cm–2 without external pressure and humidity. Notably, owing to the siphoning effect of the micropores and the strong quaternary ammonium-biphosphate ion pairs, the fuel cell exhibits a stable performance at a high current density of 0.5 A cm–2 at 160 °C, with a minimal voltage degradation rate of merely 4.7 μV h–1. Thus, the newly developed QPSBI-b-xTMA/PA materials present a promising avenue for HT-PEMFC applications.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.