Magnetically oriented nanosheet interlayer for dynamic regeneration in lithium metal batteries.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-10-23 DOI:10.1073/pnas.2413739121
Zhengyu Ju,Tianrui Zheng,Bowen Zhang,Andrei Dolocan,Amy C Marschilok,Esther S Takeuchi,Kenneth J Takeuchi,Guihua Yu
{"title":"Magnetically oriented nanosheet interlayer for dynamic regeneration in lithium metal batteries.","authors":"Zhengyu Ju,Tianrui Zheng,Bowen Zhang,Andrei Dolocan,Amy C Marschilok,Esther S Takeuchi,Kenneth J Takeuchi,Guihua Yu","doi":"10.1073/pnas.2413739121","DOIUrl":null,"url":null,"abstract":"Lithium (Li) metal has been recognized as a promising anode to advance the energy density of current Li-based batteries. However, the growth of the solid-electrolyte interphase (SEI) layer and dendritic Li microstructure pose significant challenges for the long-term operation of Li metal batteries (LMBs). Herein, we propose the utilization of a suspension electrolyte with dispersed magnetically responsive nanosheets whose orientation can be manipulated by an external magnetic field during cell operation for realizing in situ regeneration in LMBs. The regeneration mechanism arises from the redistribution of the ion flux and the formation of an inorganic-rich SEI for uniform and compact Li deposition. With the magnetic-field-induced regeneration process, we show that a Li||Li symmetric cell stably operates for 350 h at 2 mA cm-2 and 2 mA h cm-2, ~5 times that of the cell with the pristine electrolyte. Furthermore, the cycling stability can be significantly extended in the Li||NMC full cell of 3 mA h cm-2, showing a capacity retention of 67% after 500 cycles at 1C. The dynamic Li metal regeneration demonstrated here could bring useful design considerations for reviving the operating cells for achieving high-energy, long-duration battery systems.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"38 1","pages":"e2413739121"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2413739121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium (Li) metal has been recognized as a promising anode to advance the energy density of current Li-based batteries. However, the growth of the solid-electrolyte interphase (SEI) layer and dendritic Li microstructure pose significant challenges for the long-term operation of Li metal batteries (LMBs). Herein, we propose the utilization of a suspension electrolyte with dispersed magnetically responsive nanosheets whose orientation can be manipulated by an external magnetic field during cell operation for realizing in situ regeneration in LMBs. The regeneration mechanism arises from the redistribution of the ion flux and the formation of an inorganic-rich SEI for uniform and compact Li deposition. With the magnetic-field-induced regeneration process, we show that a Li||Li symmetric cell stably operates for 350 h at 2 mA cm-2 and 2 mA h cm-2, ~5 times that of the cell with the pristine electrolyte. Furthermore, the cycling stability can be significantly extended in the Li||NMC full cell of 3 mA h cm-2, showing a capacity retention of 67% after 500 cycles at 1C. The dynamic Li metal regeneration demonstrated here could bring useful design considerations for reviving the operating cells for achieving high-energy, long-duration battery systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锂金属电池动态再生的磁导向纳米片中间膜。
锂(Li)金属已被公认为是一种很有前途的阳极,可提高当前锂电池的能量密度。然而,固体电解质相间层(SEI)的生长和树枝状锂微结构对锂金属电池(LMB)的长期运行构成了重大挑战。在此,我们提出利用具有分散磁响应纳米片的悬浮电解质来实现 LMB 的原位再生。再生机制源于离子通量的重新分配和富含无机物的 SEI 的形成,从而实现均匀、紧凑的锂沉积。通过磁场诱导的再生过程,我们发现锂||锂对称电池可在 2 mA cm-2 和 2 mA h cm-2 的条件下稳定工作 350 小时,是使用原始电解质的电池的 5 倍。此外,在 3 mA h cm-2 的锂||NMC 全电池中,循环稳定性也得到了显著提高,在 1C 下循环 500 次后,容量保持率达到 67%。本文所展示的锂金属动态再生技术可为实现高能量、长寿命电池系统提供有益的设计考虑,使运行中的电池重新焕发活力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Mutation-based mechanism and evolution of the potent multidrug efflux pump RE-CmeABC in Campylobacter. Using computational modeling to validate the onset of productive determiner-noun combinations in English-learning children. Correction for Ravanfar et al., Tryptophan extends the life of cytochrome P450. Global trends in antibiotic consumption during 2016-2023 and future projections through 2030. Magnetic soft microrobots for erectile dysfunction therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1