{"title":"Can satellite products monitor solar brightening in Europe?","authors":"Ruben Urraca , Jörg Trentmann , Uwe Pfeifroth , Nadine Gobron","doi":"10.1016/j.rse.2024.114472","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite products provide the best way to monitor the solar radiation reaching the Earth’s surface on a global scale. However, their capability to monitor solar radiation trends needs to be constantly evaluated. This depends on their temporal stability and the accurate representation of all processes driving solar radiation. This study evaluates these aspects by comparing and cross-comparing different solar radiation products (ERA5, CAMS-RAD 4.6, SARAH-3, CLARA-A3, CERES-EBAF 4.2) against in-situ measurements over Europe.</div><div>All products show a moderate positive bias over Europe but strong differences in their root mean squared deviation (RMSD) related to their different cloud transmittance models. Geostationary-based products (SARAH-3, CAMS-RAD 4.6) provide the smallest RMSD closely followed by CLARA-A3, whereas ERA5 shows a large RMSD due to random errors in cloud transmittance.</div><div>All products show an increase in surface solar radiation, or brightening, over the last 40 years over Europe, but the magnitude of the trends and their spatiotemporal variability differ between products. Despite finding temporal inhomogeneities in some products, the different trends are mostly due to different aerosol modeling approaches implemented by each product. Both SARAH-3 (+2.3 <span><math><mrow><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>decade</mi></mrow></math></span>, 2001–22) and CERES-EBAF 4.2 (+2.2 <span><math><mrow><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mi>decade</mi></mrow></math></span>, 2001–22) provide the most consistent trends compared to in-situ data, showing that after stabilizing in the late 2000s, brightening is particularly recovering in Western Europe. In-situ measurements show a reduction of aerosol optical depth from 2001 to 2022 that has been accentuated in the last 10 years, particularly in Western Europe. This would be consistent with the hypothesis that brightening recovery is driven by an aerosol reduction, though other analyses suggest that clouds also play a role in this recovery. More work is needed to understand the contribution of aerosols to solar radiation trends and the exact aerosol effects represented by each solar radiation product.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114472"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003442572400498X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Satellite products provide the best way to monitor the solar radiation reaching the Earth’s surface on a global scale. However, their capability to monitor solar radiation trends needs to be constantly evaluated. This depends on their temporal stability and the accurate representation of all processes driving solar radiation. This study evaluates these aspects by comparing and cross-comparing different solar radiation products (ERA5, CAMS-RAD 4.6, SARAH-3, CLARA-A3, CERES-EBAF 4.2) against in-situ measurements over Europe.
All products show a moderate positive bias over Europe but strong differences in their root mean squared deviation (RMSD) related to their different cloud transmittance models. Geostationary-based products (SARAH-3, CAMS-RAD 4.6) provide the smallest RMSD closely followed by CLARA-A3, whereas ERA5 shows a large RMSD due to random errors in cloud transmittance.
All products show an increase in surface solar radiation, or brightening, over the last 40 years over Europe, but the magnitude of the trends and their spatiotemporal variability differ between products. Despite finding temporal inhomogeneities in some products, the different trends are mostly due to different aerosol modeling approaches implemented by each product. Both SARAH-3 (+2.3 , 2001–22) and CERES-EBAF 4.2 (+2.2 , 2001–22) provide the most consistent trends compared to in-situ data, showing that after stabilizing in the late 2000s, brightening is particularly recovering in Western Europe. In-situ measurements show a reduction of aerosol optical depth from 2001 to 2022 that has been accentuated in the last 10 years, particularly in Western Europe. This would be consistent with the hypothesis that brightening recovery is driven by an aerosol reduction, though other analyses suggest that clouds also play a role in this recovery. More work is needed to understand the contribution of aerosols to solar radiation trends and the exact aerosol effects represented by each solar radiation product.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.