Ye-Ran Wang, Xiao-Qin Zeng, Jun Wang, Christopher J. Fowler, Qiao-Xin Li, Xian-Le Bu, James Doecke, Paul Maruff, Ralph N. Martins, Christopher C. Rowe, Colin L. Masters, Yan-Jiang Wang, Yu-Hui Liu
{"title":"Autoantibodies to BACE1 promote Aβ accumulation and neurodegeneration in Alzheimer’s disease","authors":"Ye-Ran Wang, Xiao-Qin Zeng, Jun Wang, Christopher J. Fowler, Qiao-Xin Li, Xian-Le Bu, James Doecke, Paul Maruff, Ralph N. Martins, Christopher C. Rowe, Colin L. Masters, Yan-Jiang Wang, Yu-Hui Liu","doi":"10.1007/s00401-024-02814-x","DOIUrl":null,"url":null,"abstract":"<div><p>The profile of autoantibodies is dysregulated in patients with Alzheimer’s disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET<sup>−</sup> CN, 169 Aβ-PET<sup>+</sup> cognitively normal subjects (preclinical AD), and 31 Aβ-PET<sup>+</sup> cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.</p></div>","PeriodicalId":7012,"journal":{"name":"Acta Neuropathologica","volume":"148 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00401-024-02814-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The profile of autoantibodies is dysregulated in patients with Alzheimer’s disease (AD). Autoantibodies to beta-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) are present in human blood. This study aims to investigate the clinical relevance and pathophysiological roles of autoantibodies to BACE1 in AD. Clinical investigations were conducted in two independent cohorts, the Chongqing cohort, and the Australian Imaging, Biomarkers, and Lifestyle (AIBL) cohort. The Chongqing cohort included 55 AD patients, 28 patients with non-AD dementia, and 70 cognitively normal subjects (CN). The AIBL cohort included 162 Aβ-PET− CN, 169 Aβ-PET+ cognitively normal subjects (preclinical AD), and 31 Aβ-PET+ cognitively impaired subjects (Clinical AD). Plasma autoantibodies to BACE1 were determined by one-site Elisa. The associations of plasma autoantibodies to BACE1 with brain Aβ load and cognitive trajectory were investigated. The effects of autoantibodies to BACE1 on AD-type pathologies and underlying mechanisms were investigated in APP/PS1 mice and SH/APPswe/PS1wt cell lines. In the Chongqing cohort, plasma autoantibodies to BACE1 were higher in AD patients, in comparison with CN and non-AD dementia patients. In the AIBL cohort, plasma autoantibodies to BACE1 were highest in clinical AD patients, followed by preclinical AD and CN subjects. Higher autoantibodies to BACE1 were associated with an increased incidence of brain amyloid positivity conversion during follow-up. Autoantibodies to BACE1 exacerbated brain amyloid deposition and subsequent AD-type pathologies, including Tau hyperphosphorylation, neuroinflammation, and neurodegeneration in APP/PS1 mice. Autoantibodies to BACE1 increased Aβ production by promoting BACE1 expression through inhibiting PPARγ signaling. These findings suggest that autoantibodies to BACE1 are pathogenic in AD and the upregulation of these autoantibodies may promote the development of the disease. This study offers new insights into the mechanism of AD from an autoimmune perspective.
期刊介绍:
Acta Neuropathologica publishes top-quality papers on the pathology of neurological diseases and experimental studies on molecular and cellular mechanisms using in vitro and in vivo models, ideally validated by analysis of human tissues. The journal accepts Original Papers, Review Articles, Case Reports, and Scientific Correspondence (Letters). Manuscripts must adhere to ethical standards, including review by appropriate ethics committees for human studies and compliance with principles of laboratory animal care for animal experiments. Failure to comply may result in rejection of the manuscript, and authors are responsible for ensuring accuracy and adherence to these requirements.