Exploring Affective Peripheral Patterns Based on Body Surface Potentials With Covariance

IF 9.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Affective Computing Pub Date : 2024-10-24 DOI:10.1109/TAFFC.2024.3486165
Wei Wu;Yao Pi;Xianbin Zhang;Lin Xu;Wanqing Wu
{"title":"Exploring Affective Peripheral Patterns Based on Body Surface Potentials With Covariance","authors":"Wei Wu;Yao Pi;Xianbin Zhang;Lin Xu;Wanqing Wu","doi":"10.1109/TAFFC.2024.3486165","DOIUrl":null,"url":null,"abstract":"Affective patterns based on physiological signals reflect bodily changes linked to specific emotional states. Previous studies on the cardiac electrical signal, a key peripheral physiological signal, were limited by the measurement density of single-lead ECG signal, focusing solely on temporal pattern analysis but ignoring topographic pattern analysis that can reflect the body's emotional response. Our research advances affective peripheral pattern studies by innovatively using body surface potentials to comprehensively monitor cardiac electrical activity with increased measurement density. To tackle the challenge of extracting spatial and temporal features from multi-channel body surface potentials, we establish a dynamic correlation among these diverse channel signals through covariance matrices. Our hypothesis is that the dynamic inter-channel relationship provides a valuable source of insights into emotional clues. Experimental results demonstrate that the extracted spatial and temporal features effectively capture topographic and temporal patterns from cardiac electrical signals, and achieve excellent performance in classification tasks simultaneously. Our finding reveals affective patterns based on body surface potentials for the first time, offering novel insights into affective peripheral patterns analysis.","PeriodicalId":13131,"journal":{"name":"IEEE Transactions on Affective Computing","volume":"16 2","pages":"986-998"},"PeriodicalIF":9.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Affective Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10734216/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Affective patterns based on physiological signals reflect bodily changes linked to specific emotional states. Previous studies on the cardiac electrical signal, a key peripheral physiological signal, were limited by the measurement density of single-lead ECG signal, focusing solely on temporal pattern analysis but ignoring topographic pattern analysis that can reflect the body's emotional response. Our research advances affective peripheral pattern studies by innovatively using body surface potentials to comprehensively monitor cardiac electrical activity with increased measurement density. To tackle the challenge of extracting spatial and temporal features from multi-channel body surface potentials, we establish a dynamic correlation among these diverse channel signals through covariance matrices. Our hypothesis is that the dynamic inter-channel relationship provides a valuable source of insights into emotional clues. Experimental results demonstrate that the extracted spatial and temporal features effectively capture topographic and temporal patterns from cardiac electrical signals, and achieve excellent performance in classification tasks simultaneously. Our finding reveals affective patterns based on body surface potentials for the first time, offering novel insights into affective peripheral patterns analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于带有协方差的体表电位探索情感外周模式
基于生理信号的情感模式反映了与特定情绪状态相关的身体变化。心电信号是关键的外周生理信号,以往的研究受限于单导联心电信号的测量密度,只关注时间模式分析,而忽略了反映身体情绪反应的地形模式分析。我们的研究通过创新地使用体表电位来全面监测心脏电活动并增加测量密度,从而推进了情感外周模式的研究。为了解决从多通道体表电位中提取时空特征的挑战,我们通过协方差矩阵建立了这些不同通道信号之间的动态相关性。我们的假设是,动态的渠道间关系提供了洞察情感线索的宝贵来源。实验结果表明,提取的空间和时间特征能有效地捕获心电信号的地形和时间模式,同时在分类任务中取得了优异的性能。我们的发现首次揭示了基于体表电位的情感模式,为情感外围模式分析提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Affective Computing
IEEE Transactions on Affective Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
15.00
自引率
6.20%
发文量
174
期刊介绍: The IEEE Transactions on Affective Computing is an international and interdisciplinary journal. Its primary goal is to share research findings on the development of systems capable of recognizing, interpreting, and simulating human emotions and related affective phenomena. The journal publishes original research on the underlying principles and theories that explain how and why affective factors shape human-technology interactions. It also focuses on how techniques for sensing and simulating affect can enhance our understanding of human emotions and processes. Additionally, the journal explores the design, implementation, and evaluation of systems that prioritize the consideration of affect in their usability. We also welcome surveys of existing work that provide new perspectives on the historical and future directions of this field.
期刊最新文献
EmoSENSE: Modeling Sentiment-Semantic Knowledge with Hierarchical Reinforcement Learning for Emotional Image Generation Emo-DiT: Emotional Speech Synthesis With a Diffusion Model Approach to Enhance Naturalness and Emotional Expressiveness InterARM: Interpretable Affective Reasoning Model for Multimodal Sarcasm Detection Exploring canine emotions: A transfer learning and 3DCNN-based study for small databases Fine-grained EEG emotion recognition using lite residual convolution-based transformer neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1