Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-10-24 DOI:10.1088/2058-9565/ad8678
Feiran Wang, Nathan Cooper, Yinfeng He, Benjamin Hopton, David Johnson, Peng Zhao, Christopher J Tuck, Richard Hague, T Mark Fromhold, Ricky D Wildman, Lyudmila Turyanska and Lucia Hackermüller
{"title":"Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies","authors":"Feiran Wang, Nathan Cooper, Yinfeng He, Benjamin Hopton, David Johnson, Peng Zhao, Christopher J Tuck, Richard Hague, T Mark Fromhold, Ricky D Wildman, Lyudmila Turyanska and Lucia Hackermüller","doi":"10.1088/2058-9565/ad8678","DOIUrl":null,"url":null,"abstract":"Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digital light processing—we demonstrate, for the first time, a 3D-printed glass vapour cell. The exploitation of AM capacities allows intricate internal architectures, overprinting of 2D optoelectronical materials to create integrated sensors and surface functionalisation, while also showing the ability to tailor the optical properties of the AM glass by in-situ growth of gold nanoparticles. The produced cells achieve ultra-high vacuum of 2 × 10−9 mbar and enable Doppler-free spectroscopy; we demonstrate laser frequency stabilisation as a QT application. These results highlight the transformative role that AM can play for QT in enabling compact, optimised and integrated multi-material components and devices.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"29 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad8678","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digital light processing—we demonstrate, for the first time, a 3D-printed glass vapour cell. The exploitation of AM capacities allows intricate internal architectures, overprinting of 2D optoelectronical materials to create integrated sensors and surface functionalisation, while also showing the ability to tailor the optical properties of the AM glass by in-situ growth of gold nanoparticles. The produced cells achieve ultra-high vacuum of 2 × 10−9 mbar and enable Doppler-free spectroscopy; we demonstrate laser frequency stabilisation as a QT application. These results highlight the transformative role that AM can play for QT in enabling compact, optimised and integrated multi-material components and devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为下一代量子技术增材制造功能化原子蒸气电池
原子蒸气电池是量子技术(QT)不可或缺的工具,但传统制造技术的能力限制了其改进潜力。我们首次利用增材制造(AM)技术--通过数字光处理进行釜聚合--展示了三维打印的玻璃蒸气电池。利用增材制造技术的能力,可以制造复杂的内部结构、叠印二维光电材料以创建集成传感器和表面功能化,同时还展示了通过原位生长金纳米粒子来定制增材制造玻璃光学特性的能力。生产出的电池可达到 2 × 10-9 毫巴的超高真空,实现了无多普勒光谱;我们还展示了激光稳频的 QT 应用。这些成果凸显了 AM 在实现紧凑、优化和集成的多材料元件和设备方面对 QT 的变革作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Digital–analog quantum learning on Rydberg atom arrays Planar scanning probe microscopy enables vector magnetic field imaging at the nanoscale Quantum-inspired attribute selection algorithms Quantum state tomography based on infidelity estimation Near-optimal quantum kernel principal component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1