Laboratory Data as a Potential Source of Bias in Healthcare Artificial Intelligence and Machine Learning Models.

IF 4 2区 医学 Q1 MEDICAL LABORATORY TECHNOLOGY Annals of Laboratory Medicine Pub Date : 2024-10-24 DOI:10.3343/alm.2024.0323
Hung S Luu
{"title":"Laboratory Data as a Potential Source of Bias in Healthcare Artificial Intelligence and Machine Learning Models.","authors":"Hung S Luu","doi":"10.3343/alm.2024.0323","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) and machine learning (ML) are anticipated to transform the practice of medicine. As one of the largest sources of digital data in healthcare, laboratory results can strongly influence AI and ML algorithms that require large sets of healthcare data for training. Embedded bias introduced into AI and ML models not only has disastrous consequences for quality of care but also may perpetuate and exacerbate health disparities. The lack of test harmonization, which is defined as the ability to produce comparable results and the same interpretation irrespective of the method or instrument platform used to produce the result, may introduce aggregation bias into algorithms with potential adverse outcomes for patients. Limited interoperability of laboratory results at the technical, syntactic, semantic, and organizational levels is a source of embedded bias that limits the accuracy and generalizability of algorithmic models. Population-specific issues, such as inadequate representation in clinical trials and inaccurate race attribution, not only affect the interpretation of laboratory results but also may perpetuate erroneous conclusions based on AI and ML models in the healthcare literature.","PeriodicalId":8421,"journal":{"name":"Annals of Laboratory Medicine","volume":"2 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Laboratory Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3343/alm.2024.0323","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) and machine learning (ML) are anticipated to transform the practice of medicine. As one of the largest sources of digital data in healthcare, laboratory results can strongly influence AI and ML algorithms that require large sets of healthcare data for training. Embedded bias introduced into AI and ML models not only has disastrous consequences for quality of care but also may perpetuate and exacerbate health disparities. The lack of test harmonization, which is defined as the ability to produce comparable results and the same interpretation irrespective of the method or instrument platform used to produce the result, may introduce aggregation bias into algorithms with potential adverse outcomes for patients. Limited interoperability of laboratory results at the technical, syntactic, semantic, and organizational levels is a source of embedded bias that limits the accuracy and generalizability of algorithmic models. Population-specific issues, such as inadequate representation in clinical trials and inaccurate race attribution, not only affect the interpretation of laboratory results but also may perpetuate erroneous conclusions based on AI and ML models in the healthcare literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实验室数据是医疗人工智能和机器学习模型偏差的潜在来源。
人工智能(AI)和机器学习(ML)有望改变医疗实践。作为医疗领域最大的数字数据来源之一,实验室结果会对需要大量医疗数据集进行训练的人工智能和人工智能算法产生重大影响。人工智能和人工智能模型中植入的偏见不仅会对医疗质量造成灾难性后果,还可能延续和加剧健康差距。缺乏检测协调性(即无论使用哪种方法或仪器平台得出结果,都能得出可比结果和相同的解释)可能会在算法中引入聚集偏差,从而给患者带来潜在的不良后果。实验室结果在技术、语法、语义和组织层面上的互操作性有限,是造成嵌入式偏差的一个原因,从而限制了算法模型的准确性和可推广性。特定人群的问题,如临床试验中的代表性不足和不准确的种族归属,不仅会影响实验室结果的解释,还可能使医疗文献中基于人工智能和 ML 模型的错误结论长期存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Laboratory Medicine
Annals of Laboratory Medicine MEDICAL LABORATORY TECHNOLOGY-
CiteScore
8.30
自引率
12.20%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Annals of Laboratory Medicine is the official journal of Korean Society for Laboratory Medicine. The journal title has been recently changed from the Korean Journal of Laboratory Medicine (ISSN, 1598-6535) from the January issue of 2012. The JCR 2017 Impact factor of Ann Lab Med was 1.916.
期刊最新文献
Ability of the Capillary Electrophoresis-based HbA1c Assay to Detect Rare Hemoglobin Variants. Performance Evaluation of the LabGenius C-CT/NG-BMX Assay for Chlamydia trachomatis and Neisseria gonorrhoeae Detection. The First Korean Case of MAN1B1-Congenital Disorder of Glycosylation Diagnosed Using Whole-exome Sequencing and Matrix-assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry. Endogenous Thrombin Potential Level Helps Predict High Blood Loss in Patients Undergoing Cardiac Surgery. TP53 Mutation Status in Myelodysplastic Neoplasm and Acute Myeloid Leukemia: Impact of Reclassification Based on the 5th WHO and International Consensus Classification Criteria: A Korean Multicenter Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1