{"title":"Tetrahydroxybenzoquinone-Based Two-Dimensional Conductive Metal–Organic Framework via π-d Conjugation Modulation for Enhanced Oxygen Evolution Reaction","authors":"Yantao Wang, Xiaowan Bai, Junfeng Huang, Wangzu Li, Jinhua Zhang, Hua Li, Yu Long, Yong Peng, Cailing Xu","doi":"10.1021/acscatal.4c04977","DOIUrl":null,"url":null,"abstract":"2D conductive metal–organic frameworks (2D c-MOFs) have attracted significant interest as efficient electrocatalysts for the oxygen evolution reaction (OER). However, effectively regulating their catalytic activity remains a significant challenge. Herein, density functional theory (DFT) was performed to explore the effect of π-d conjugation modulation on the electronic structure of the tetrahydroxy-1,4-benzoquinone-based 2D c-MOFs. The computational results indicate that the strong π-d conjugation caused by orbital hybridization between Co and Fe widens and enhances the hybridization between the d<sub><i>xz</i></sub>/d<sub><i>yz</i></sub> orbitals at the metal sites and the p orbitals of the ligands, thereby affecting the reconstruction of the MOFs during the OER process. Experimentally, CoFe-THQ with various atomic ratios was synthesized. The results indicated that the synthesized Co<sub>0.6</sub>Fe<sub>0.4</sub>-THQ powders only needs an overpotential of 247 mV to reach a current density of 10 mA cm<sup>–2</sup> for the OER in alkaline medium, which is much lower than most reported transition metal-based electrocatalysts and even better than that of the benchmark RuO<sub>2</sub> electrocatalyst. Furthermore, in situ Raman and in situ Fourier transform infrared spectroscopy analyses revealed that Co<sub>0.6</sub>Fe<sub>0.4</sub>-THQ undergoes a different reconstruction evolution during the OER process compared to Co-THQ, with the mixed (Co, Fe) bimetallic oxides ((Co, Fe)<sub>3</sub>O<sub>4</sub> and α-(Co, Fe)<sub>2</sub>O<sub>3</sub>) formed after reconstruction identified as the true active species. This study opens up an effective avenue for the rational design of high-activity 2D c-MOF electrocatalysts.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c04977","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
2D conductive metal–organic frameworks (2D c-MOFs) have attracted significant interest as efficient electrocatalysts for the oxygen evolution reaction (OER). However, effectively regulating their catalytic activity remains a significant challenge. Herein, density functional theory (DFT) was performed to explore the effect of π-d conjugation modulation on the electronic structure of the tetrahydroxy-1,4-benzoquinone-based 2D c-MOFs. The computational results indicate that the strong π-d conjugation caused by orbital hybridization between Co and Fe widens and enhances the hybridization between the dxz/dyz orbitals at the metal sites and the p orbitals of the ligands, thereby affecting the reconstruction of the MOFs during the OER process. Experimentally, CoFe-THQ with various atomic ratios was synthesized. The results indicated that the synthesized Co0.6Fe0.4-THQ powders only needs an overpotential of 247 mV to reach a current density of 10 mA cm–2 for the OER in alkaline medium, which is much lower than most reported transition metal-based electrocatalysts and even better than that of the benchmark RuO2 electrocatalyst. Furthermore, in situ Raman and in situ Fourier transform infrared spectroscopy analyses revealed that Co0.6Fe0.4-THQ undergoes a different reconstruction evolution during the OER process compared to Co-THQ, with the mixed (Co, Fe) bimetallic oxides ((Co, Fe)3O4 and α-(Co, Fe)2O3) formed after reconstruction identified as the true active species. This study opens up an effective avenue for the rational design of high-activity 2D c-MOF electrocatalysts.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.