Digital image analysis of gas bypassing and mixing in gas-fluidized bed: Effect of particle shape

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-10-25 DOI:10.1002/aic.18633
Shreya Chouhan, Ajita Neogi, Hare K. Mohanta, Arvind Kumar Sharma, Navneet Goyal, Priya C. Sande
{"title":"Digital image analysis of gas bypassing and mixing in gas-fluidized bed: Effect of particle shape","authors":"Shreya Chouhan, Ajita Neogi, Hare K. Mohanta, Arvind Kumar Sharma, Navneet Goyal, Priya C. Sande","doi":"10.1002/aic.18633","DOIUrl":null,"url":null,"abstract":"The study investigates effect of particle shape on gas bypassing and mixing of gas-fluidized Geldart A particles. A shallow fluidized bed (FB), configured at benchscale, was used with digital image analysis (DIA) for the investigation. The extent of scatter of tracer particles throughout the bed was assessed from DIA images of defluidized powder. A novel method employing Jupyter notebook software, was used to directly determine Mixing Index from digital images. Remarkably, platelet-shaped China clay powder displayed the best mixing characteristics (Mixing Index: 0.79) with no significant bypassing. Angular shaped Quartz displayed moderate mixing (Mixing Index: 0.67), but high bypassing (Bypassing Index: 0.75). Contrary to conventional assumptions, spherical-shaped diatomite exhibited poor mixing (Mixing Index: 0.61) with the highest bypassing (Bypassing Index: 0.82). Platelet particles performed well even with fines removal. Most likely, particle shape significantly influenced the number of available particle contact points, tracer migration, and traceronparticle binding.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"110 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18633","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates effect of particle shape on gas bypassing and mixing of gas-fluidized Geldart A particles. A shallow fluidized bed (FB), configured at benchscale, was used with digital image analysis (DIA) for the investigation. The extent of scatter of tracer particles throughout the bed was assessed from DIA images of defluidized powder. A novel method employing Jupyter notebook software, was used to directly determine Mixing Index from digital images. Remarkably, platelet-shaped China clay powder displayed the best mixing characteristics (Mixing Index: 0.79) with no significant bypassing. Angular shaped Quartz displayed moderate mixing (Mixing Index: 0.67), but high bypassing (Bypassing Index: 0.75). Contrary to conventional assumptions, spherical-shaped diatomite exhibited poor mixing (Mixing Index: 0.61) with the highest bypassing (Bypassing Index: 0.82). Platelet particles performed well even with fines removal. Most likely, particle shape significantly influenced the number of available particle contact points, tracer migration, and traceronparticle binding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气体流化床中气体旁路和混合的数字图像分析:颗粒形状的影响
该研究探讨了颗粒形状对气体旁路和气体流化 Geldart A 颗粒混合的影响。研究使用了台式配置的浅层流化床(FB)和数字图像分析仪(DIA)。示踪粒子在整个流化床中的散射程度是通过流化粉末的 DIA 图像进行评估的。使用 Jupyter 笔记本软件的新方法可直接从数字图像中确定混合指数。值得注意的是,血小板状的中国粘土粉末显示出最佳的混合特性(混合指数:0.79),没有明显的旁路现象。角形石英显示出中等程度的混合(混合指数:0.67),但旁通指数较高(旁通指数:0.75)。与传统假设相反,球形硅藻土的混合性较差(混合指数:0.61),旁通指数最高(旁通指数:0.82)。即使去除细粒,板状颗粒也表现良好。颗粒形状很可能会对可用颗粒接触点的数量、示踪剂迁移和示踪剂与颗粒的结合产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Stabilization of cuσ+ via strong Cu-O-Si interface for efficient electrocatalytic acetylene semi-hydrogenation Simultaneous optimization of simulated moving bed adsorption and distillation for 2,3-butanediol recovery A highly integrated ceramic membrane-based reactor for intensifying the biomass gasification to clean syngas Boosting electrocatalytic alcohol oxidation: Efficient d–π interaction with modified TEMPO and bioinspired structure Doping Si/O to enhance interfacial occupancy of demulsifiers for low-carbon breaking of water-in-heavy oil emulsions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1