Distributed Robust Artificial-Noise-Aided Secure Precoding for Wiretap MIMO Interference Channels

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-10-25 DOI:10.1109/TIFS.2024.3486548
Zhengmin Kong;Jing Song;Shaoshi Yang;Li Gan;Weizhi Meng;Tao Huang;Sheng Chen
{"title":"Distributed Robust Artificial-Noise-Aided Secure Precoding for Wiretap MIMO Interference Channels","authors":"Zhengmin Kong;Jing Song;Shaoshi Yang;Li Gan;Weizhi Meng;Tao Huang;Sheng Chen","doi":"10.1109/TIFS.2024.3486548","DOIUrl":null,"url":null,"abstract":"We propose a distributed artificial noise-assisted precoding scheme for secure communications over wiretap multi-input multi-output (MIMO) interference channels, where K legitimate transmitter-receiver pairs communicate in the presence of a sophisticated eavesdropper having more receive-antennas than the legitimate user. Realistic constraints are considered by imposing statistical error bounds for the channel state information of both the eavesdropping and interference channels. Based on the asynchronous distributed pricing model, the proposed scheme maximizes the total utility of all the users, where each user’s utility function is defined as the secrecy rate minus the interference cost imposed on other users. Using the weighted minimum mean square error, Schur complement and sign-definiteness techniques, the original non-concave optimization problem is approximated with high accuracy as a quasi-concave problem, which can be solved by the alternating convex search method. Simulation results consolidate our theoretical analysis and show that the proposed scheme outperforms the artificial noise-assisted interference alignment and minimum total mean-square error-based schemes.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"19 ","pages":"10130-10140"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735239/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a distributed artificial noise-assisted precoding scheme for secure communications over wiretap multi-input multi-output (MIMO) interference channels, where K legitimate transmitter-receiver pairs communicate in the presence of a sophisticated eavesdropper having more receive-antennas than the legitimate user. Realistic constraints are considered by imposing statistical error bounds for the channel state information of both the eavesdropping and interference channels. Based on the asynchronous distributed pricing model, the proposed scheme maximizes the total utility of all the users, where each user’s utility function is defined as the secrecy rate minus the interference cost imposed on other users. Using the weighted minimum mean square error, Schur complement and sign-definiteness techniques, the original non-concave optimization problem is approximated with high accuracy as a quasi-concave problem, which can be solved by the alternating convex search method. Simulation results consolidate our theoretical analysis and show that the proposed scheme outperforms the artificial noise-assisted interference alignment and minimum total mean-square error-based schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对窃听 MIMO 干扰信道的分布式鲁棒人工噪声辅助安全编码
我们提出了一种分布式人工噪声辅助预编码方案,用于在窃听多输入多输出(MIMO)干扰信道上进行安全通信,在这种信道中,K 个合法发射机-接收机对在比合法用户拥有更多接收天线的复杂窃听者面前进行通信。通过对窃听信道和干扰信道的信道状态信息施加统计误差限制,考虑了现实的约束条件。基于异步分布式定价模型,所提出的方案使所有用户的总效用最大化,其中每个用户的效用函数被定义为保密率减去强加给其他用户的干扰成本。利用加权最小均方误差、舒尔补和符号定义技术,原始的非凹优化问题被高精度地近似为准凹问题,并可通过交替凸搜索法求解。仿真结果巩固了我们的理论分析,并表明所提出的方案优于人工噪音辅助干扰配准和基于最小总均方误差的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Attackers Are Not the Same! Unveiling the Impact of Feature Distribution on Label Inference Attacks Backdoor Online Tracing With Evolving Graphs LHADRO: A Robust Control Framework for Autonomous Vehicles Under Cyber-Physical Attacks Towards Mobile Palmprint Recognition via Multi-view Hierarchical Graph Learning Succinct Hash-based Arbitrary-Range Proofs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1