Haiou Li, Vandana Sachdev, Xin Tian, My-Le Nguyen, Matthew Hsieh, Courtney Fitzhugh, Emily Limerick, Wynona Coles, Nancy Asomaning, Anna Conrey, Colin O Wu, Swee Lay Thein
{"title":"A machine learning-based workflow for predicting transplant outcomes in patients with sickle cell disease.","authors":"Haiou Li, Vandana Sachdev, Xin Tian, My-Le Nguyen, Matthew Hsieh, Courtney Fitzhugh, Emily Limerick, Wynona Coles, Nancy Asomaning, Anna Conrey, Colin O Wu, Swee Lay Thein","doi":"10.1111/bjh.19842","DOIUrl":null,"url":null,"abstract":"<p><p>Allogeneic haematopoietic cell transplantation (HCT) with HLA-matched sibling donor remains the most established curative therapeutic option for patients with sickle cell disease (SCD). However, it is not without risks, highlighting the need for a risk stratification system. Utilizing a machine learning (ML) approach that combines clinical and imaging variables, we identified red cell distribution width and renal organ damage as important risk factors for patients undergoing HCT. This ML-based algorithm, similar to an approach previously reported for predicting mortality in patients with SCD, should be applicable to risk factor discovery in similar studies.</p>","PeriodicalId":135,"journal":{"name":"British Journal of Haematology","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Haematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bjh.19842","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Allogeneic haematopoietic cell transplantation (HCT) with HLA-matched sibling donor remains the most established curative therapeutic option for patients with sickle cell disease (SCD). However, it is not without risks, highlighting the need for a risk stratification system. Utilizing a machine learning (ML) approach that combines clinical and imaging variables, we identified red cell distribution width and renal organ damage as important risk factors for patients undergoing HCT. This ML-based algorithm, similar to an approach previously reported for predicting mortality in patients with SCD, should be applicable to risk factor discovery in similar studies.
期刊介绍:
The British Journal of Haematology publishes original research papers in clinical, laboratory and experimental haematology. The Journal also features annotations, reviews, short reports, images in haematology and Letters to the Editor.