{"title":"From Critical Raw Materials to Circular Raw Materials.","authors":"Joost M van Gaalen, J Chris Slootweg","doi":"10.1002/cssc.202401170","DOIUrl":null,"url":null,"abstract":"<p><p>This perspective addresses the key challenge of advancing the use of Critical Raw Materials (CRMs) and proposes a transition towards circular raw material management. In the context of our current economy, the unsustainable consumption, environmental degradation, geopolitical risks, and economic vulnerabilities associated with CRMs highlight the limitations in ensuring long-term CRM availability, emphasizing the environmental, social, and economic implications. In response, this perspective underlines a multifaceted technological approach to mitigate CRM criticality, focusing on reducing CRM use, substituting CRMs with less critical materials, and enhancing recovery and recycling processes, with Design for Circularity as the most impactful solution. The latter advocates for a paradigm shift in product design and material utilization, emphasizing principles like modular design, product life extension, and the transition from product ownership to service models. Such a holistic approach is not only crucial for sustainable CRM management, but is also key to fostering a resilient and low-carbon economy.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401170"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401170","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This perspective addresses the key challenge of advancing the use of Critical Raw Materials (CRMs) and proposes a transition towards circular raw material management. In the context of our current economy, the unsustainable consumption, environmental degradation, geopolitical risks, and economic vulnerabilities associated with CRMs highlight the limitations in ensuring long-term CRM availability, emphasizing the environmental, social, and economic implications. In response, this perspective underlines a multifaceted technological approach to mitigate CRM criticality, focusing on reducing CRM use, substituting CRMs with less critical materials, and enhancing recovery and recycling processes, with Design for Circularity as the most impactful solution. The latter advocates for a paradigm shift in product design and material utilization, emphasizing principles like modular design, product life extension, and the transition from product ownership to service models. Such a holistic approach is not only crucial for sustainable CRM management, but is also key to fostering a resilient and low-carbon economy.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology