Molten-Salt-Mediated Chemical Looping Oxidative Dehydrogenation of Ethane with In-Situ Carbon Capture and Utilization.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-10-27 DOI:10.1002/cssc.202401473
Kyle Vogt-Lowell, Dennis Chacko, Kunran Yang, Jace Carsten, Junchen Liu, Matthew Housley, Fanxing Li
{"title":"Molten-Salt-Mediated Chemical Looping Oxidative Dehydrogenation of Ethane with In-Situ Carbon Capture and Utilization.","authors":"Kyle Vogt-Lowell, Dennis Chacko, Kunran Yang, Jace Carsten, Junchen Liu, Matthew Housley, Fanxing Li","doi":"10.1002/cssc.202401473","DOIUrl":null,"url":null,"abstract":"<p><p>The molten-salt-mediated oxidative dehydrogenation (MM-ODH) of ethane (C<sub>2</sub>H<sub>6</sub>) via a chemical looping scheme represents an effective carbon capture and utilization (CCU) method for the valorization of ethane-rich shale gas and concurrent mitigation of carbon dioxide (CO<sub>2</sub>) emissions. Here, stepwise experimentation with Li<sub>2</sub>CO<sub>3</sub>-Na<sub>2</sub>CO<sub>3</sub>-K<sub>2</sub>CO<sub>3</sub> (LNK) ternary salts (i) assessed how each component of the LNK mixture impacted ethane MM-ODH performance and (ii) explored physicochemical and thermodynamic mechanisms behind melt-induced changes to ethylene (C<sub>2</sub>H<sub>4</sub>) and carbon monoxide (CO) yields. Of fifteen screened LNK compositions, nine exhibited ethylene yields greater than 50 % at 800 °C while maintaining C<sub>2</sub>H<sub>4</sub> selectivities of 85 % or higher. LNK salts rich in Li<sub>2</sub>CO<sub>3</sub> content yielded more ethylene and CO on average than their counterparts, and net CO<sub>2</sub> capture per cycle reached a maximum of ~75 %. Extended MM-ODH cycling also demonstrated long-term stability of a high-performing LNK medium. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations suggested that the molten salt does not directly activate C<sub>2</sub>H<sub>6</sub>. Meanwhile, an empirical model informed by experimental data and reaction thermodynamics adequately predicted overall MM-ODH performance from LNK composition and provided insights into the system's primary drivers.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401473"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401473","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The molten-salt-mediated oxidative dehydrogenation (MM-ODH) of ethane (C2H6) via a chemical looping scheme represents an effective carbon capture and utilization (CCU) method for the valorization of ethane-rich shale gas and concurrent mitigation of carbon dioxide (CO2) emissions. Here, stepwise experimentation with Li2CO3-Na2CO3-K2CO3 (LNK) ternary salts (i) assessed how each component of the LNK mixture impacted ethane MM-ODH performance and (ii) explored physicochemical and thermodynamic mechanisms behind melt-induced changes to ethylene (C2H4) and carbon monoxide (CO) yields. Of fifteen screened LNK compositions, nine exhibited ethylene yields greater than 50 % at 800 °C while maintaining C2H4 selectivities of 85 % or higher. LNK salts rich in Li2CO3 content yielded more ethylene and CO on average than their counterparts, and net CO2 capture per cycle reached a maximum of ~75 %. Extended MM-ODH cycling also demonstrated long-term stability of a high-performing LNK medium. Density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations suggested that the molten salt does not directly activate C2H6. Meanwhile, an empirical model informed by experimental data and reaction thermodynamics adequately predicted overall MM-ODH performance from LNK composition and provided insights into the system's primary drivers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔盐介导的乙烷化学循环氧化脱氢与原位碳捕获和利用。
通过化学循环方案对乙烷(C2H6)进行熔盐介导氧化脱氢(MM-ODH)是一种有效的碳捕集与利用(CCU)方法,可实现富含乙烷的页岩气的价值化并同时减少二氧化碳(CO2)的排放。在此,对 Li2CO3-Na2CO3-K2CO3 (LNK) 三元盐进行了逐步实验,(i) 评估了 LNK 混合物中的每种成分对乙烷 MM-ODH 性能的影响,(ii) 探索了熔融诱导乙烯 (C2H4) 和一氧化碳 (CO) 产量变化背后的物理化学和热力学机制。在筛选出的 15 种 LNK 成分中,有 9 种在 800°C 时乙烯产率超过 50%,同时保持 85% 或更高的 C2H4 选择性。与同类产品相比,富含 Li2CO3 的 LNK 盐平均产生更多的乙烯和 CO,每次循环的 CO2 净捕获量最高可达约 75%。延长 MM-ODH 循环还证明了高性能 LNK 介质的长期稳定性。密度泛函理论(DFT)计算和原子分子动力学(AIMD)模拟表明,熔盐不会直接激活 C2H6。同时,根据实验数据和反应热力学建立的经验模型可以从 LNK 成分充分预测 MM-ODH 的整体性能,并提供了对该系统主要驱动因素的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution. Polymer Networks Assembled by Ruthenium Catalysts for Enhanced Water Splitting Performance in Calixarene Dye-Sensitized Photoelectrochemical Cells. A Solid Electrolyte Based on Sodium-doped Li4-xNaxTi5O12 with PVDF for Solid State Lithium Metal Battery. Cascade Catalytic Systems for Converting CO2 into C2+ Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1