Regulating Molecular Interactions in Polybenzimidazole Membrane for Efficient Vanadium Redox Flow Battery.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-10-24 DOI:10.1002/cssc.202401576
Yuke Su, Suqin Liu, Weiwei Zhu, Kui Huang, Da Huang, Peng Jiang, Jianhui Liu, Guang Yang, Zhen He, Jue Wang
{"title":"Regulating Molecular Interactions in Polybenzimidazole Membrane for Efficient Vanadium Redox Flow Battery.","authors":"Yuke Su, Suqin Liu, Weiwei Zhu, Kui Huang, Da Huang, Peng Jiang, Jianhui Liu, Guang Yang, Zhen He, Jue Wang","doi":"10.1002/cssc.202401576","DOIUrl":null,"url":null,"abstract":"<p><p>The tightly bonded structure of polybenzimidazole (PBI) membrane is the origin of its poor proton conductivity, which severely hinders achieving a cost-effective membrane for vanadium redox flow battery (VRFB). It desires a strategy to relax the membrane structure to significantly improve the proton conductivity and maintain its structure stability. Therefore, this work proposes a novel strategy through regulating molecular interactions within PBI membrane to loosen up the structure of PBI membrane and dramatically enhance the proton conductivity. The interactions in PBI membrane are switched by DMSO/water and acid through sequentially treating membrane with these solutions. The efficient PBI membrane prepared using this strategy demonstrates an outstanding performance for VRFB, with the proton conductivity enhanced by 3850 % (from 1.9 to 76.3 mS cm<sup>-1</sup>), and VRFB achieves a high energy efficiency of 80.5 % under 200 mA cm<sup>-2</sup>. More importantly, this work shed lights on the structure-property relationship of PBI membrane, and the mechanism in enhancing proton conductivity is unraveled, which is of great significance for the development of VRFB membranes.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401576"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401576","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tightly bonded structure of polybenzimidazole (PBI) membrane is the origin of its poor proton conductivity, which severely hinders achieving a cost-effective membrane for vanadium redox flow battery (VRFB). It desires a strategy to relax the membrane structure to significantly improve the proton conductivity and maintain its structure stability. Therefore, this work proposes a novel strategy through regulating molecular interactions within PBI membrane to loosen up the structure of PBI membrane and dramatically enhance the proton conductivity. The interactions in PBI membrane are switched by DMSO/water and acid through sequentially treating membrane with these solutions. The efficient PBI membrane prepared using this strategy demonstrates an outstanding performance for VRFB, with the proton conductivity enhanced by 3850 % (from 1.9 to 76.3 mS cm-1), and VRFB achieves a high energy efficiency of 80.5 % under 200 mA cm-2. More importantly, this work shed lights on the structure-property relationship of PBI membrane, and the mechanism in enhancing proton conductivity is unraveled, which is of great significance for the development of VRFB membranes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节聚苯并咪唑膜中的分子相互作用以实现高效的钒氧化还原液流电池
聚苯并咪唑(PBI)膜的紧键结构是其质子传导性差的根源,这严重阻碍了钒氧化还原液流电池(VRFB)膜成本效益的实现。这就需要一种放松膜结构的策略,以显著提高质子传导性并保持其结构稳定性。因此,本研究提出了一种新策略,通过调节 PBI 膜内的分子相互作用来松弛 PBI 膜的结构,从而显著提高质子传导性。通过用二甲基亚砜/水和酸依次处理 PBI 膜,可以切换膜内的相互作用。利用这种策略制备的高效 PBI 膜在 VRFB 上表现出了卓越的性能,质子电导率提高了 3850%(从 1.9 mS cm-1 提高到 76.3 mS cm-1),VRFB 在 200 mA cm-2 下实现了 80.5% 的高能效。更重要的是,该研究揭示了 PBI 膜的结构-性能关系,揭示了质子传导性增强的机理,对 VRFB 膜的开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution. Polymer Networks Assembled by Ruthenium Catalysts for Enhanced Water Splitting Performance in Calixarene Dye-Sensitized Photoelectrochemical Cells. A Solid Electrolyte Based on Sodium-doped Li4-xNaxTi5O12 with PVDF for Solid State Lithium Metal Battery. Cascade Catalytic Systems for Converting CO2 into C2+ Products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1