Self-Assembly Hybrid Manufacture of Nanoarrays for Metasurfaces.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-23 DOI:10.1002/smtd.202401288
Bowen Yu, Yuan Ma, Yujiao Wang, Lele Song, Guoxu Yu, Xuanhe Zhang, Qingyi Wang, Zuobo Pang, Ye Zhang, Qi Wang, Jiadao Wang
{"title":"Self-Assembly Hybrid Manufacture of Nanoarrays for Metasurfaces.","authors":"Bowen Yu, Yuan Ma, Yujiao Wang, Lele Song, Guoxu Yu, Xuanhe Zhang, Qingyi Wang, Zuobo Pang, Ye Zhang, Qi Wang, Jiadao Wang","doi":"10.1002/smtd.202401288","DOIUrl":null,"url":null,"abstract":"<p><p>The development of metasurfaces necessitates the rapid fabrication of nanoarrays on diverse substrates at large scales, the preparation of patterned nanoarrays on both planar and curved surfaces, and even the creation of nanoarrays on prefabricated structures to form multiscale metastructures. However, conventional fabrication methods fall short of these rigorous requirements. In this work, a novel self-assembly hybrid manufacturing (SAHM) method is introduced for the rapid and scalable fabrication of shape-controllable nanoarrays on various rigid and flexible substrates. This method can be easily integrated with other fabrication techniques, such as lithography and screen printing, to produce patterned nanoarrays on both planar and non-developable surfaces. Utilizing the SAHM method, nanoarrays are fabricated on prefabricated micropillars to create multiscale pillar-nanoarray metastructures. Measurements indicate that these multiscale metastructures can manipulate electromagnetic waves across a range of wavelengths. Therefore, the SAHM method demonstrates the potential of multiscale structures as a new paradigm for the design and fabrication of metasurfaces.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401288"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401288","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of metasurfaces necessitates the rapid fabrication of nanoarrays on diverse substrates at large scales, the preparation of patterned nanoarrays on both planar and curved surfaces, and even the creation of nanoarrays on prefabricated structures to form multiscale metastructures. However, conventional fabrication methods fall short of these rigorous requirements. In this work, a novel self-assembly hybrid manufacturing (SAHM) method is introduced for the rapid and scalable fabrication of shape-controllable nanoarrays on various rigid and flexible substrates. This method can be easily integrated with other fabrication techniques, such as lithography and screen printing, to produce patterned nanoarrays on both planar and non-developable surfaces. Utilizing the SAHM method, nanoarrays are fabricated on prefabricated micropillars to create multiscale pillar-nanoarray metastructures. Measurements indicate that these multiscale metastructures can manipulate electromagnetic waves across a range of wavelengths. Therefore, the SAHM method demonstrates the potential of multiscale structures as a new paradigm for the design and fabrication of metasurfaces.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于金属表面的纳米阵列的自组装混合制造。
要开发元表面,就必须在不同基底上快速制造大尺度纳米阵列,在平面和曲面上制备图案化纳米阵列,甚至在预制结构上制造纳米阵列,以形成多尺度元结构。然而,传统的制造方法无法满足这些严格的要求。在这项工作中,介绍了一种新型自组装混合制造(SAHM)方法,用于在各种刚性和柔性基底上快速、可扩展地制造形状可控的纳米阵列。这种方法可以很容易地与光刻和丝网印刷等其他制造技术相结合,在平面和非显影表面上制造图案化纳米阵列。利用 SAHM 方法,可以在预制微柱上制造纳米阵列,从而形成多尺度的柱状纳米阵列转移结构。测量结果表明,这些多尺度转移结构可在一定波长范围内操纵电磁波。因此,SAHM 方法展示了多尺度结构作为元表面设计和制造新范例的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1