Duc V.H. Tran, Ha T.N. Nguyen, Hee-Chul Ahn, Young-Woo Kim
{"title":"310-Helix stabilization and screw sense control via stereochemically configured 4-atom hydrocarbon staples","authors":"Duc V.H. Tran, Ha T.N. Nguyen, Hee-Chul Ahn, Young-Woo Kim","doi":"10.1016/j.bmc.2024.117963","DOIUrl":null,"url":null,"abstract":"<div><div>The 3<sub>10</sub>-helix is a crucial secondary structure in proteins, playing an essential role in various protein–protein interactions, yet stabilizing it in biologically relevant peptides remains challenging. In this study, we investigated the potential of 4-atom hydrocarbon staples to stabilize 3<sub>10</sub>-helices in peptides. Using ring-closing metathesis, we demonstrated that the staple’s configuration is critical for both the stabilization and screw sense control of 3<sub>10</sub>-helices. Circular dichroism spectroscopy revealed that the <strong><em>R<sub>i</sub></em><sub>,</sub><em><sub>i</sub></em><sub>+3</sub><em>S</em>(4)</strong> staple—a 4-atom cross-link with (<em>R</em>)-configuration at the <em>i</em> position, (<em>S</em>)-configuration at the <em>i</em> + 3 position, and flanked by methyl groups—strongly induces right-handed 3<sub>10</sub>-helices, especially in sequences with proteinogenic <span>l</span>-amino acids. Furthermore, multiple staples effectively stabilized longer peptides, underscoring the versatility of this approach for applications in peptide therapeutics and biomolecular engineering.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"114 ","pages":"Article 117963"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003778","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 310-helix is a crucial secondary structure in proteins, playing an essential role in various protein–protein interactions, yet stabilizing it in biologically relevant peptides remains challenging. In this study, we investigated the potential of 4-atom hydrocarbon staples to stabilize 310-helices in peptides. Using ring-closing metathesis, we demonstrated that the staple’s configuration is critical for both the stabilization and screw sense control of 310-helices. Circular dichroism spectroscopy revealed that the Ri,i+3S(4) staple—a 4-atom cross-link with (R)-configuration at the i position, (S)-configuration at the i + 3 position, and flanked by methyl groups—strongly induces right-handed 310-helices, especially in sequences with proteinogenic l-amino acids. Furthermore, multiple staples effectively stabilized longer peptides, underscoring the versatility of this approach for applications in peptide therapeutics and biomolecular engineering.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.