Dongxuan Ni , Xuechun Chen , Hairong Wang , Tianze Shen , Xiaoli Li , Bin Liang , Ruihan Zhang , Rong Liu , Weilie Xiao
{"title":"Design, synthesis and biological evaluation of 4,6-diarylquinoxaline-based KDM4D inhibitors","authors":"Dongxuan Ni , Xuechun Chen , Hairong Wang , Tianze Shen , Xiaoli Li , Bin Liang , Ruihan Zhang , Rong Liu , Weilie Xiao","doi":"10.1016/j.bmc.2024.117945","DOIUrl":null,"url":null,"abstract":"<div><div>Histone lysine demethylase 4D (KDM4D) is a critical player in the regulation of tumorigenesis, emerging as a potential target for developing anti-tumor agents. In this study, a series of KDM4D inhibitors containing the 4,6-diarylquinoxaline scaffold were prepared based on the previously discovered hit compound <strong>QD-1</strong>. Among these inhibitors, <strong>33a</strong> was the most potent compound, with an IC<sub>50</sub> value of 0.62 μM. In an <em>in vitro</em> assay, <strong>33a</strong> showed a superior ability to inhibit the viability of liver cancer Huh-7 cells with IC<sub>50</sub> = 5.23 μM. <strong>33a</strong> exhibits significant effects in inhibiting cell cycle progression and proliferation of liver cancer cells, as well as suppressing cell migration. This work provided a promising scaffold for developing KDM4D inhibitors, as well as a lead compound for the development of anti-tumor drugs targeting KDM4D.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"114 ","pages":"Article 117945"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003596","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone lysine demethylase 4D (KDM4D) is a critical player in the regulation of tumorigenesis, emerging as a potential target for developing anti-tumor agents. In this study, a series of KDM4D inhibitors containing the 4,6-diarylquinoxaline scaffold were prepared based on the previously discovered hit compound QD-1. Among these inhibitors, 33a was the most potent compound, with an IC50 value of 0.62 μM. In an in vitro assay, 33a showed a superior ability to inhibit the viability of liver cancer Huh-7 cells with IC50 = 5.23 μM. 33a exhibits significant effects in inhibiting cell cycle progression and proliferation of liver cancer cells, as well as suppressing cell migration. This work provided a promising scaffold for developing KDM4D inhibitors, as well as a lead compound for the development of anti-tumor drugs targeting KDM4D.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.