Tannic acid etching construction of hollow heterogeneous CoSe2-FeSe2@nitrogen-doped carbon rhombic dodecahedron for high-performance sodium storage

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-10-18 DOI:10.1016/j.jcis.2024.10.081
{"title":"Tannic acid etching construction of hollow heterogeneous CoSe2-FeSe2@nitrogen-doped carbon rhombic dodecahedron for high-performance sodium storage","authors":"","doi":"10.1016/j.jcis.2024.10.081","DOIUrl":null,"url":null,"abstract":"<div><div>Metal selenides are very promising anode materials for sodium ion batteries (SIBs) due to their rich redox behaviors, low cost, high theoretical capacity, and environmentally benign. However, the poor cycle performance and rate capability greatly hinder their widespread applications. In this paper, we have proposed a tannic acid etching zeolitic imidazolate framework-67 (ZIF-67)-derived selenide strategy to construct hollow heterogeneous CoSe<sub>2</sub>-FeSe<sub>2</sub>@<em>N</em>-doped carbon rhombic dodecahedron (CoSe<sub>2</sub>-FeSe<sub>2</sub>@NC) as anode for high-performance SIBs. The special microstructural characteristics with hollow rhombic dodecahedron can reduce the Na<sup>+</sup>/electron migration path and alleviate the volume variations during cycling. The NC can improve conductivity and reduce volume effects during cycling. What’s more, the built-in electric fields (BIEF) at the CoSe<sub>2</sub>-FeSe<sub>2</sub> heterointerfaces can modulate the electronic structure and accelerate the kinetics of ionic diffusion, resulting in the improvement electrochemical properties. When applied as anodes for SIBs, the CoSe<sub>2</sub>-FeSe<sub>2</sub>@NC can deliver a remarkable electrochemical performance in terms of sodium storage capacity (648.5 mAh g<sup>−1</sup> at 0.2 A/g), initial coulombic efficiency (82.0 %), cycle performance (92.6 % capacity retention after 100 cycles), and rate capability of 450.6 mAh g<sup>−1</sup> after 1000 cycles at a high rate of 1 A/g. The kinetic analysis indicates that the discharging-charging process of CoSe<sub>2</sub>-FeSe<sub>2</sub>@NC is ascribed to both capacitive behavior and controlled diffusion.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724024123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal selenides are very promising anode materials for sodium ion batteries (SIBs) due to their rich redox behaviors, low cost, high theoretical capacity, and environmentally benign. However, the poor cycle performance and rate capability greatly hinder their widespread applications. In this paper, we have proposed a tannic acid etching zeolitic imidazolate framework-67 (ZIF-67)-derived selenide strategy to construct hollow heterogeneous CoSe2-FeSe2@N-doped carbon rhombic dodecahedron (CoSe2-FeSe2@NC) as anode for high-performance SIBs. The special microstructural characteristics with hollow rhombic dodecahedron can reduce the Na+/electron migration path and alleviate the volume variations during cycling. The NC can improve conductivity and reduce volume effects during cycling. What’s more, the built-in electric fields (BIEF) at the CoSe2-FeSe2 heterointerfaces can modulate the electronic structure and accelerate the kinetics of ionic diffusion, resulting in the improvement electrochemical properties. When applied as anodes for SIBs, the CoSe2-FeSe2@NC can deliver a remarkable electrochemical performance in terms of sodium storage capacity (648.5 mAh g−1 at 0.2 A/g), initial coulombic efficiency (82.0 %), cycle performance (92.6 % capacity retention after 100 cycles), and rate capability of 450.6 mAh g−1 after 1000 cycles at a high rate of 1 A/g. The kinetic analysis indicates that the discharging-charging process of CoSe2-FeSe2@NC is ascribed to both capacitive behavior and controlled diffusion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鞣酸蚀刻构建用于高性能钠储存的中空异质 CoSe2-FeSe2@ 掺氮碳菱形十二面体。
金属硒化物具有丰富的氧化还原行为、成本低、理论容量高且对环境无害,是非常有前途的钠离子电池(SIB)正极材料。然而,较差的循环性能和速率能力极大地阻碍了它们的广泛应用。本文提出了一种单宁酸蚀刻沸石咪唑酸框架-67(ZIF-67)衍生硒化物的策略,以构建中空异质 CoSe2-FeSe2@N 掺杂碳菱形十二面体(CoSe2-FeSe2@NC)作为高性能 SIB 的阳极。中空十二面体的特殊微观结构特征可以减少 Na+/电子迁移路径,缓解循环过程中的体积变化。NC 可以提高导电性,减少循环过程中的体积效应。此外,CoSe2-FeSe2 异质界面上的内置电场(BIEF)可以调节电子结构,加速离子扩散动力学,从而改善电化学性能。将 CoSe2-FeSe2@NC 用作 SIB 的阳极时,其钠存储容量(0.2 A/g 时为 648.5 mAh g-1)、初始库仑效率(82.0%)、循环性能(100 次循环后容量保持率为 92.6%)以及 1 A/g 高倍率下 1000 次循环后 450.6 mAh g-1 的速率能力等方面的电化学性能都非常出色。动力学分析表明,CoSe2-FeSe2@NC 的放电-充电过程可归因于电容行为和受控扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1