Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM)

IF 3 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Journal of Environmental Health Science and Engineering Pub Date : 2024-09-23 DOI:10.1007/s40201-024-00920-2
Isaac Sajan R, Manchu M, Felsy C, Joselin Kavitha M
{"title":"Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM)","authors":"Isaac Sajan R,&nbsp;Manchu M,&nbsp;Felsy C,&nbsp;Joselin Kavitha M","doi":"10.1007/s40201-024-00920-2","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastic pollution poses a significant threat to our environment, necessitating effective predictive modelling approaches for better management and mitigation. In this study, we introduce a pioneering methodology that fuses the power of Artificial Neural Networks (ANN) and Hidden Markov Models (HMM) for microplastic predictive modelling. Leveraging a comprehensive dataset, our integrated model exhibits exceptional performance, with an Accuracy of 0.96, Precision of 0.96, Recall of 0.97, and an F1 Score of 0.96. The achieved Accuracy underscores the model’s proficiency in distinguishing microplastic and non-microplastic entities, promising robust and reliable predictions. Precision, as a measure of correct positive identifications, demonstrates our model's effectiveness in minimizing false positives, a crucial aspect for environmental monitoring. Moreover, the perfect Recall score signifies the model's ability to detect all relevant microplastic instances, addressing concerns about false negatives. The F1 Score encapsulates this dual proficiency, showcasing a harmonious trade-off between precision and recall. Our research not only advances the field of microplastic prediction but also highlights the potential of synergizing ANN and HMM methodologies for comprehensive environmental assessments. The reported performance metrics underscore the practical applicability of our approach, offering a valuable tool for tackling the pervasive issue of microplastic pollution and fostering proactive environmental stewardship.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 2","pages":"579 - 592"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00920-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastic pollution poses a significant threat to our environment, necessitating effective predictive modelling approaches for better management and mitigation. In this study, we introduce a pioneering methodology that fuses the power of Artificial Neural Networks (ANN) and Hidden Markov Models (HMM) for microplastic predictive modelling. Leveraging a comprehensive dataset, our integrated model exhibits exceptional performance, with an Accuracy of 0.96, Precision of 0.96, Recall of 0.97, and an F1 Score of 0.96. The achieved Accuracy underscores the model’s proficiency in distinguishing microplastic and non-microplastic entities, promising robust and reliable predictions. Precision, as a measure of correct positive identifications, demonstrates our model's effectiveness in minimizing false positives, a crucial aspect for environmental monitoring. Moreover, the perfect Recall score signifies the model's ability to detect all relevant microplastic instances, addressing concerns about false negatives. The F1 Score encapsulates this dual proficiency, showcasing a harmonious trade-off between precision and recall. Our research not only advances the field of microplastic prediction but also highlights the potential of synergizing ANN and HMM methodologies for comprehensive environmental assessments. The reported performance metrics underscore the practical applicability of our approach, offering a valuable tool for tackling the pervasive issue of microplastic pollution and fostering proactive environmental stewardship.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合人工神经网络和隐马尔可夫模型(ANN-HMM)建立微塑料预测模型。
微塑料污染对我们的环境构成了严重威胁,因此有必要采用有效的预测建模方法来更好地管理和缓解污染。在本研究中,我们介绍了一种开创性的方法,它融合了人工神经网络(ANN)和隐马尔可夫模型(HMM)的力量,用于微塑料预测建模。利用综合数据集,我们的集成模型表现出卓越的性能,准确率为 0.96,精确率为 0.96,召回率为 0.97,F1 分数为 0.96。所达到的准确度突出表明了该模型在区分微塑料和非微塑料实体方面的熟练程度,从而保证了预测的稳健性和可靠性。精确度是对正确的正面识别的衡量标准,它表明我们的模型能有效地减少误报,这对环境监测来说是至关重要的。此外,完美的 Recall 分数表明模型有能力检测到所有相关的微塑料实例,从而解决了假阴性的问题。F1 分数概括了这种双重能力,展示了精确度和召回率之间的和谐权衡。我们的研究不仅推动了微塑料预测领域的发展,还凸显了将 ANN 和 HMM 方法协同用于综合环境评估的潜力。所报告的性能指标强调了我们方法的实际适用性,为解决普遍存在的微塑料污染问题和促进积极的环境管理提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Health Science and Engineering
Journal of Environmental Health Science and Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
7.50
自引率
2.90%
发文量
81
期刊介绍: Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management. A broad outline of the journal''s scope includes: -Water pollution and treatment -Wastewater treatment and reuse -Air control -Soil remediation -Noise and radiation control -Environmental biotechnology and nanotechnology -Food safety and hygiene
期刊最新文献
Association between particulate matter exposure and acute ischemic stroke admissions in less-polluted areas: a time-series study using a distributed lag nonlinear model Assessing health risks of polycyclic aromatic hydrocarbons (PAHs) in cooked fish using monte carlo simulation: a global review and meta-analysis Correction: Comprehensive systematic review and meta-analysis of microplastic prevalence and abundance in freshwater fish species: the effect of fish species habitat, feeding behavior, and Fulton’s condition factor Microplastic predictive modelling with the integration of Artificial Neural Networks and Hidden Markov Models (ANN-HMM) Polystyrene nanoplastics: optimized removal using magnetic nano-adsorbent and toxicity assessment in zebrafish embryos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1