Development of Minodronic Acid-Loaded Dissolving Microneedles for Enhanced Osteoporosis Therapy: Influence of Drug Loading on the Bioavailability of Minodronic Acid
{"title":"Development of Minodronic Acid-Loaded Dissolving Microneedles for Enhanced Osteoporosis Therapy: Influence of Drug Loading on the Bioavailability of Minodronic Acid","authors":"Beibei Yang, Zeshi Jiang, Xiaoqian Feng, Jingxin Yang, Chao Lu, Chuanbin Wu, Xin Pan, Tingting Peng","doi":"10.1208/s12249-024-02963-y","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoporosis is a metabolic bone disorder with impaired bone microstructure and increased bone fractures, seriously affecting the quality of life of patients. Among various bisphosphonates prescribed for managing osteoporosis, minodronic acid (MA) is the most potent inhibitor of bone context resorption. However, oral MA tablet is the only commercialized dosage form that has extremely low bioavailability, severe adverse reactions, and poor patient compliance. To tackle these issues, we developed MA-loaded dissolving microneedles (MA-MNs) with significantly improved bioavailability for osteoporosis therapy. We investigated the influence of drug loading on the physicochemical properties, transdermal permeation behavior, and pharmacokinetics of MA-MNs. The drug loading of MA-MNs exerted almost no effect on their morphology, mechanical property, and skin insertion ability, but it compromised the transdermal permeability and bioavailability of MA-MNs. Compared with oral MA, MA-MNs with the lowest drug loading (224.9 μg/patch) showed a 9-fold and 25.8-fold increase in peak concentration and bioavailability, respectively. This may be ascribed to the reason that the increased drug loading can generate higher burst release, higher drug residual rate, and drug supersaturation effect in skin tissues, eventually limiting drug absorption into the systemic circulation. Moreover, MA-MNs prolonged the half-life of MA and provided more steady plasma drug concentrations than intravenously injected MA, which helps to reduce dosing frequency and side effects. Therefore, dissolving MNs with optimized drug loading provides a promising alternative for bisphosphonate drug delivery.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"25 8","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-02963-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is a metabolic bone disorder with impaired bone microstructure and increased bone fractures, seriously affecting the quality of life of patients. Among various bisphosphonates prescribed for managing osteoporosis, minodronic acid (MA) is the most potent inhibitor of bone context resorption. However, oral MA tablet is the only commercialized dosage form that has extremely low bioavailability, severe adverse reactions, and poor patient compliance. To tackle these issues, we developed MA-loaded dissolving microneedles (MA-MNs) with significantly improved bioavailability for osteoporosis therapy. We investigated the influence of drug loading on the physicochemical properties, transdermal permeation behavior, and pharmacokinetics of MA-MNs. The drug loading of MA-MNs exerted almost no effect on their morphology, mechanical property, and skin insertion ability, but it compromised the transdermal permeability and bioavailability of MA-MNs. Compared with oral MA, MA-MNs with the lowest drug loading (224.9 μg/patch) showed a 9-fold and 25.8-fold increase in peak concentration and bioavailability, respectively. This may be ascribed to the reason that the increased drug loading can generate higher burst release, higher drug residual rate, and drug supersaturation effect in skin tissues, eventually limiting drug absorption into the systemic circulation. Moreover, MA-MNs prolonged the half-life of MA and provided more steady plasma drug concentrations than intravenously injected MA, which helps to reduce dosing frequency and side effects. Therefore, dissolving MNs with optimized drug loading provides a promising alternative for bisphosphonate drug delivery.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.