Aging, brain-derived neurotrophic factor, and allergen-induced pulmonary responses in mice.

Li Y Drake, Benjamin B Roos, Sarah A Wicher, Latifa Khalfaoui, Lisa L Nesbitt, Yun Hua Fang, Christina M Pabelick, Y S Prakash
{"title":"Aging, brain-derived neurotrophic factor, and allergen-induced pulmonary responses in mice.","authors":"Li Y Drake, Benjamin B Roos, Sarah A Wicher, Latifa Khalfaoui, Lisa L Nesbitt, Yun Hua Fang, Christina M Pabelick, Y S Prakash","doi":"10.1152/ajplung.00145.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Asthma in the elderly is being recognized as more severe, resistant to standard therapies, and having greater morbidity. Therefore, it comes important to understand the impact of aging-associated airway structure and function changes towards pathogenesis of asthma in the elderly. Here, airway smooth muscle plays important roles in airway hyperreactivity and structural remodeling. The role of smooth muscle in asthma can be modulated by growth factors (including neurotrophins such as brain-derived neurotrophic factor (BDNF)) and pro-inflammatory senescence factors. In this study, we investigated aging effects on airway hyperreactivity, structural remodeling, inflammation, and senescence in a mouse model of allergic asthma. C57BL/6J wildtype mice or smooth muscle-specific BDNF knockout mice at 4, 18 and 24 months of age were intranasally exposed to mixed allergens (ovalbumin, aspergillus, <i>Alternaria</i>, and house dust mite) over 4 weeks. Assessing lung function by FlexiVent, we found that compared with 4 month old mice, 18 and 24 month old C57BL/6J mice showed decreased airway resistance and increased airway compliance after PBS or MA treatment. Deletion of smooth muscle BDNF blunted airway hyperreactivity in aged mice. Lung histology analysis revealed that aging increased bronchial airway thickness and decreased lung inflammation. Multiplex assays showed that aging largely reduced allergen-induced lung expression of proinflammatory chemokines and cytokines. By immunohistochemistry staining, we found that aging increased bronchial airway expression of senescence markers, including p21, phospho-p53 and phospho-gH2A.X. Our data suggest that aging associated increase of airway senescence in the context of allergen exposure may contribute to asthma pathology in the elderly.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00145.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Asthma in the elderly is being recognized as more severe, resistant to standard therapies, and having greater morbidity. Therefore, it comes important to understand the impact of aging-associated airway structure and function changes towards pathogenesis of asthma in the elderly. Here, airway smooth muscle plays important roles in airway hyperreactivity and structural remodeling. The role of smooth muscle in asthma can be modulated by growth factors (including neurotrophins such as brain-derived neurotrophic factor (BDNF)) and pro-inflammatory senescence factors. In this study, we investigated aging effects on airway hyperreactivity, structural remodeling, inflammation, and senescence in a mouse model of allergic asthma. C57BL/6J wildtype mice or smooth muscle-specific BDNF knockout mice at 4, 18 and 24 months of age were intranasally exposed to mixed allergens (ovalbumin, aspergillus, Alternaria, and house dust mite) over 4 weeks. Assessing lung function by FlexiVent, we found that compared with 4 month old mice, 18 and 24 month old C57BL/6J mice showed decreased airway resistance and increased airway compliance after PBS or MA treatment. Deletion of smooth muscle BDNF blunted airway hyperreactivity in aged mice. Lung histology analysis revealed that aging increased bronchial airway thickness and decreased lung inflammation. Multiplex assays showed that aging largely reduced allergen-induced lung expression of proinflammatory chemokines and cytokines. By immunohistochemistry staining, we found that aging increased bronchial airway expression of senescence markers, including p21, phospho-p53 and phospho-gH2A.X. Our data suggest that aging associated increase of airway senescence in the context of allergen exposure may contribute to asthma pathology in the elderly.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠的衰老、脑源性神经营养因子和过敏原诱发的肺部反应。
人们认识到,老年哮喘更为严重,对标准疗法有抵抗力,发病率更高。因此,了解与衰老相关的气道结构和功能变化对老年哮喘发病机制的影响非常重要。其中,气道平滑肌在气道高反应性和结构重塑中发挥着重要作用。平滑肌在哮喘中的作用可受生长因子(包括神经营养素,如脑源性神经营养因子(BDNF))和促炎性衰老因子的调节。在这项研究中,我们研究了过敏性哮喘小鼠模型中衰老对气道过度反应、结构重塑、炎症和衰老的影响。4、18 和 24 个月大的 C57BL/6J 野生型小鼠或平滑肌特异性 BDNF 基因敲除小鼠经鼻内暴露于混合过敏原(卵清蛋白、曲霉菌、Alternaria 和屋尘螨)4 周。通过FlexiVent评估肺功能,我们发现与4个月大的小鼠相比,18和24个月大的C57BL/6J小鼠在经过PBS或MA处理后,气道阻力降低,气道顺应性增加。平滑肌 BDNF 的缺失可减弱老龄小鼠的气道高反应性。肺组织学分析表明,衰老增加了支气管气道厚度,减少了肺部炎症。多重检测显示,衰老在很大程度上减少了过敏原诱导的肺部促炎趋化因子和细胞因子的表达。通过免疫组化染色,我们发现衰老增加了支气管气道衰老标志物的表达,包括 p21、phospho-p53 和 phospho-gH2A.X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
4.10%
发文量
146
审稿时长
2 months
期刊介绍: The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.
期刊最新文献
Disruption of immune responses by type 1 diabetes exacerbates SARS-CoV-2 mediated lung injury. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Expression of Semaphorin3E/PlexinD1 in human airway smooth muscle cells of patients with COPD. Identification of FGFR4 as a regulator of myofibroblast differentiation in pulmonary fibrosis. Inference of alveolar capillary network connectivity from blood flow dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1