Dominik H W Leitz, Philip Konietzke, Willi L Wagner, Mara Mertiny, Claudia Benke, Thomas Schneider, Rory E Morty, Christian Dullin, Wolfram Stiller, Hans-Ulrich Kauczor, Marcus A Mall, Julia Duerr, Mark O Wielpütz
{"title":"Longitudinal microcomputed tomography detects onset and progression of pulmonary fibrosis in conditional <i>Nedd4-2</i> deficient mice.","authors":"Dominik H W Leitz, Philip Konietzke, Willi L Wagner, Mara Mertiny, Claudia Benke, Thomas Schneider, Rory E Morty, Christian Dullin, Wolfram Stiller, Hans-Ulrich Kauczor, Marcus A Mall, Julia Duerr, Mark O Wielpütz","doi":"10.1152/ajplung.00280.2023","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease, which is usually diagnosed late in advanced stages. Little is known about the subclinical development of IPF. We previously generated a mouse model with conditional <i>Nedd4-2</i> deficiency (<i>Nedd4-2<sup>-/-</sup></i>) that develops IPF-like lung disease. The aim of this study was to characterize the onset and progression of IPF-like lung disease in conditional <i>Nedd4-2<sup>-/-</sup></i> mice by longitudinal micro-computed tomography (CT). In vivo micro-CT was performed longitudinally in control and conditional <i>Nedd4-2<sup>-/-</sup></i> mice at 1, 2, 3, 4, and 5 mo after doxycycline induction. Furthermore, terminal in vivo micro-CT followed by pulmonary function testing and post mortem micro-CT was performed in age-matched mice. Micro-CT images were evaluated for pulmonary fibrosis using an adapted fibrosis scoring system. Histological assessment of lung collagen content was conducted as well. Micro-CT is sensitive to detect the onset and progression of pulmonary fibrosis in vivo and to quantify distinct radiological IPF-like features along disease development in conditional <i>Nedd4-2<sup>-/-</sup></i> mice. Nonspecific interstitial alterations were detected from 3 mo, whereas key features such as honeycombing-like lesions were detected from 4 mo onward. Pulmonary function correlated well with in vivo (<i>r</i> = -0.738) and post mortem (<i>r</i> = -0.633) micro-CT fibrosis scores and collagen content. Longitudinal micro-CT enables in vivo monitoring of the onset and progression and detects radiological key features of IPF-like lung disease in conditional <i>Nedd4-2<sup>-/-</sup></i> mice. Our data support micro-CT as a sensitive quantitative endpoint for the preclinical evaluation of novel antifibrotic strategies.<b>NEW & NOTEWORTHY</b> IPF diagnosis, particularly in early stages, remains challenging. In this study, micro-CT is used in conditional <i>Nedd4-2<sup>-/-</sup></i> mice to closely monitor the onset and progression of progressive pulmonary fibrosis in vivo. Together with high-resolution post mortem micro-CT, this allowed us to track how nonspecific lung lesions develop into key IPF-like features. This approach offers a noninvasive method to monitor pulmonary fibrosis, providing a quantitative endpoint for the preclinical evaluation of novel antifibrotic strategies.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L917-L929"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00280.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease, which is usually diagnosed late in advanced stages. Little is known about the subclinical development of IPF. We previously generated a mouse model with conditional Nedd4-2 deficiency (Nedd4-2-/-) that develops IPF-like lung disease. The aim of this study was to characterize the onset and progression of IPF-like lung disease in conditional Nedd4-2-/- mice by longitudinal micro-computed tomography (CT). In vivo micro-CT was performed longitudinally in control and conditional Nedd4-2-/- mice at 1, 2, 3, 4, and 5 mo after doxycycline induction. Furthermore, terminal in vivo micro-CT followed by pulmonary function testing and post mortem micro-CT was performed in age-matched mice. Micro-CT images were evaluated for pulmonary fibrosis using an adapted fibrosis scoring system. Histological assessment of lung collagen content was conducted as well. Micro-CT is sensitive to detect the onset and progression of pulmonary fibrosis in vivo and to quantify distinct radiological IPF-like features along disease development in conditional Nedd4-2-/- mice. Nonspecific interstitial alterations were detected from 3 mo, whereas key features such as honeycombing-like lesions were detected from 4 mo onward. Pulmonary function correlated well with in vivo (r = -0.738) and post mortem (r = -0.633) micro-CT fibrosis scores and collagen content. Longitudinal micro-CT enables in vivo monitoring of the onset and progression and detects radiological key features of IPF-like lung disease in conditional Nedd4-2-/- mice. Our data support micro-CT as a sensitive quantitative endpoint for the preclinical evaluation of novel antifibrotic strategies.NEW & NOTEWORTHY IPF diagnosis, particularly in early stages, remains challenging. In this study, micro-CT is used in conditional Nedd4-2-/- mice to closely monitor the onset and progression of progressive pulmonary fibrosis in vivo. Together with high-resolution post mortem micro-CT, this allowed us to track how nonspecific lung lesions develop into key IPF-like features. This approach offers a noninvasive method to monitor pulmonary fibrosis, providing a quantitative endpoint for the preclinical evaluation of novel antifibrotic strategies.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.