--Connecting Transcriptomics with Computational Modeling to Reveal Developmental Adaptations in Pediatric Human Atrial Tissue.

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS American journal of physiology. Heart and circulatory physiology Pub Date : 2024-10-25 DOI:10.1152/ajpheart.00474.2024
Shatha Salameh, Devon Guerrelli, Jacob A Miller, Manan Desai, Nicolae Moise, Can Yerebakan, Alisa Bruce, Pranava Sinha, Yves d'Udekem, Seth H Weinberg, Nikki Gillum Posnack
{"title":"--Connecting Transcriptomics with Computational Modeling to Reveal Developmental Adaptations in Pediatric Human Atrial Tissue.","authors":"Shatha Salameh, Devon Guerrelli, Jacob A Miller, Manan Desai, Nicolae Moise, Can Yerebakan, Alisa Bruce, Pranava Sinha, Yves d'Udekem, Seth H Weinberg, Nikki Gillum Posnack","doi":"10.1152/ajpheart.00474.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Nearly 1% of babies are born with congenital heart disease (CHD) - many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we collected right atrial tissue samples from pediatric patients (n=117) undergoing heart surgery. Patients were stratified into five age groups. We measured age-dependent adaptations in cardiac gene expression, and used computational modeling to simulate action potential and calcium transients. Enrichment of differentially expressed genes (DEGs) revealed age-dependent changes in several key biological processes (e.g., cell cycle, structural organization), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited age-dependent trends, with changes in calcium handling (<i>I</i><sub>NCX</sub>) and repolarization (<i>I</i><sub>K1</sub>) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We observed a shift in repolarization reserve, with lower <i>I</i><sub>Kr</sub> expression in younger patients, a finding potentially tied to an increased amplitude of <i>I</i><sub>Ks</sub> that could be triggered by elevated sympathetic activation in pediatric patients. Collectively, this study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology, shedding light on molecular mechanisms underlying cardiac maturation and function throughout development.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00474.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Nearly 1% of babies are born with congenital heart disease (CHD) - many of whom will require heart surgery within the first few years of life. A detailed understanding of cardiac maturation can help to expand our knowledge on cardiac diseases that develop during gestation, identify age-appropriate drug therapies, and inform clinical care decisions related to surgical repair and postoperative management. Yet, to date, our knowledge of the temporal changes that cardiomyocytes undergo during postnatal development is limited. In this study, we collected right atrial tissue samples from pediatric patients (n=117) undergoing heart surgery. Patients were stratified into five age groups. We measured age-dependent adaptations in cardiac gene expression, and used computational modeling to simulate action potential and calcium transients. Enrichment of differentially expressed genes (DEGs) revealed age-dependent changes in several key biological processes (e.g., cell cycle, structural organization), cardiac ion channels, and calcium handling genes. Gene-associated changes in ionic currents exhibited age-dependent trends, with changes in calcium handling (INCX) and repolarization (IK1) most strongly associated with an age-dependent decrease in the action potential plateau potential and increase in triangulation, respectively. We observed a shift in repolarization reserve, with lower IKr expression in younger patients, a finding potentially tied to an increased amplitude of IKs that could be triggered by elevated sympathetic activation in pediatric patients. Collectively, this study provides valuable insights into age-dependent changes in human cardiac gene expression and electrophysiology, shedding light on molecular mechanisms underlying cardiac maturation and function throughout development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
--将转录组学与计算建模相结合,揭示小儿人类心房组织的发育适应性。
近 1% 的婴儿出生时患有先天性心脏病 (CHD),其中许多人在出生后的头几年需要进行心脏手术。对心脏成熟的详细了解有助于扩大我们对妊娠期心脏疾病的认识,确定适合不同年龄的药物疗法,并为与手术修复和术后管理相关的临床护理决策提供依据。然而,迄今为止,我们对心肌细胞在出生后发育过程中所经历的时间变化的了解还很有限。在这项研究中,我们收集了接受心脏手术的儿童患者(人数为 117 人)的右心房组织样本。患者被分为五个年龄组。我们测量了心脏基因表达的年龄适应性,并使用计算模型模拟了动作电位和钙离子瞬态。差异表达基因(DEGs)的富集显示了几个关键生物过程(如细胞周期、结构组织)、心脏离子通道和钙处理基因的年龄依赖性变化。与基因相关的离子电流变化呈现出与年龄相关的趋势,其中钙处理(INCX)和复极化(IK1)的变化分别与动作电位高原电位的下降和三角化的增加密切相关。我们观察到复极化储备发生了变化,年轻患者的 IKr 表达较低,这一发现可能与 IKs 振幅增大有关,而小儿患者交感神经激活增强可能会引发 IKs 振幅增大。总之,这项研究为人类心脏基因表达和电生理学的年龄依赖性变化提供了宝贵的见解,揭示了整个发育过程中心脏成熟和功能的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
期刊最新文献
The role of T cells in vascular aging, hypertension, and atherosclerosis. A zebrafish model to study RRAGD variants associated cardiomyopathy. Acceleration of age-related impairments in vascular function in women: interrogation of the (un)usual hormonal suspects. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1