{"title":"Anti-MET Antibody Therapies in Non-Small-Cell Lung Cancer: Current Progress and Future Directions.","authors":"Kinsley Wang, Robert Hsu","doi":"10.3390/antib13040088","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer mortality globally, though advances in targeted therapies have improved treatment outcomes. The mesenchymal-epithelial transition (<i>MET</i>) gene plays a significant role in NSCLC, often through protein overexpression, exon 14 skipping mutations, and gene amplification, many of which arise as resistance mechanisms to other oncogenic drivers like epidermal growth factor receptor (<i>EGFR</i>) mutations. This review examines the development and clinical efficacy of anti-MET antibody therapies. <b>Methods:</b> A comprehensive literature search was conducted using major medical databases looking at key relevant studies on anti-MET antibody studies. Both authors reviewed the literature, assessed study quality, and interpreted the results from each study. <b>Results:</b> Amivantamab, a bispecific EGFR/MET antibody was approved to treat EGFR exon 20 insertion and now has recently been extended to target classical EGFR mutations with progression on osimertinib. Other important anti-MET targeted therapies in development include antibody drug conjugates such as telisotuzumab vedotin, REGN5093-M114, and AZD9592 and emibetuzumab, which is a humanized immunoglobulin G4 monoclonal bivalent MET antibody. <b>Conclusions:</b> MET plays a significant role in NSCLC and amivantamab along with other anti-MET targeted therapies play a role in directly targeting MET and addressing acquired resistance to oncogenic drivers. Future research should focus on developing novel MET antibody drugs and exploring new therapeutic combinations to enhance treatment efficacy and overcome resistance in NSCLC. Refining biomarker-driven approaches to ensure precise patient selection is also critical to optimizing treatment outcomes.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib13040088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Non-small-cell lung cancer (NSCLC) remains a leading cause of cancer mortality globally, though advances in targeted therapies have improved treatment outcomes. The mesenchymal-epithelial transition (MET) gene plays a significant role in NSCLC, often through protein overexpression, exon 14 skipping mutations, and gene amplification, many of which arise as resistance mechanisms to other oncogenic drivers like epidermal growth factor receptor (EGFR) mutations. This review examines the development and clinical efficacy of anti-MET antibody therapies. Methods: A comprehensive literature search was conducted using major medical databases looking at key relevant studies on anti-MET antibody studies. Both authors reviewed the literature, assessed study quality, and interpreted the results from each study. Results: Amivantamab, a bispecific EGFR/MET antibody was approved to treat EGFR exon 20 insertion and now has recently been extended to target classical EGFR mutations with progression on osimertinib. Other important anti-MET targeted therapies in development include antibody drug conjugates such as telisotuzumab vedotin, REGN5093-M114, and AZD9592 and emibetuzumab, which is a humanized immunoglobulin G4 monoclonal bivalent MET antibody. Conclusions: MET plays a significant role in NSCLC and amivantamab along with other anti-MET targeted therapies play a role in directly targeting MET and addressing acquired resistance to oncogenic drivers. Future research should focus on developing novel MET antibody drugs and exploring new therapeutic combinations to enhance treatment efficacy and overcome resistance in NSCLC. Refining biomarker-driven approaches to ensure precise patient selection is also critical to optimizing treatment outcomes.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.