Jun-Ichi Abe, Bryan G Allen, Andreas M Beyer, David Lewandowski, Kranti A Mapuskar, Vikram Subramanian, Michelle R Tamplin, Isabella M Grumbach
{"title":"Radiation-Induced Macrovessel/Microvessel Disease.","authors":"Jun-Ichi Abe, Bryan G Allen, Andreas M Beyer, David Lewandowski, Kranti A Mapuskar, Vikram Subramanian, Michelle R Tamplin, Isabella M Grumbach","doi":"10.1161/ATVBAHA.124.319866","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation therapy (RT) is a cornerstone in cancer treatment (used in 50% of cases), yet challenges persist because damage to normal tissue through direct impact of radiation or bystander effects is inevitable. Injury of macrovessels by RT manifests as obstructive disease, which is akin to atherosclerotic disease. Historically observed in coronary arteries of patients treated for breast cancer and lymphoma, it also affects patients receiving contemporary therapy for lung and chest cancers. Moreover, radiation at various sites can lead to peripheral vascular disease. An aspect of radiation-induced injury that has received little attention is microvascular injury, which typically results from damage to the endothelium and is considered the primary driver of RT-induced toxicity in the skin, kidney, and brain. This review delves into the clinical manifestations of RT-induced vascular disease, signaling pathways, cellular targets affected by radiation injury, and preclinical models of RT-induced vascular injury. The goal is to inspire the development of innovative strategies to prevent RT-related cardiovascular disease.</p>","PeriodicalId":8401,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology","volume":" ","pages":"2407-2415"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.124.319866","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation therapy (RT) is a cornerstone in cancer treatment (used in 50% of cases), yet challenges persist because damage to normal tissue through direct impact of radiation or bystander effects is inevitable. Injury of macrovessels by RT manifests as obstructive disease, which is akin to atherosclerotic disease. Historically observed in coronary arteries of patients treated for breast cancer and lymphoma, it also affects patients receiving contemporary therapy for lung and chest cancers. Moreover, radiation at various sites can lead to peripheral vascular disease. An aspect of radiation-induced injury that has received little attention is microvascular injury, which typically results from damage to the endothelium and is considered the primary driver of RT-induced toxicity in the skin, kidney, and brain. This review delves into the clinical manifestations of RT-induced vascular disease, signaling pathways, cellular targets affected by radiation injury, and preclinical models of RT-induced vascular injury. The goal is to inspire the development of innovative strategies to prevent RT-related cardiovascular disease.
期刊介绍:
The journal "Arteriosclerosis, Thrombosis, and Vascular Biology" (ATVB) is a scientific publication that focuses on the fields of vascular biology, atherosclerosis, and thrombosis. It is a peer-reviewed journal that publishes original research articles, reviews, and other scholarly content related to these areas. The journal is published by the American Heart Association (AHA) and the American Stroke Association (ASA).
The journal was published bi-monthly until January 1992, after which it transitioned to a monthly publication schedule. The journal is aimed at a professional audience, including academic cardiologists, vascular biologists, physiologists, pharmacologists and hematologists.