Daniela Mokrá , Jana Adamčáková , Soňa Bálentová , Romana Barošová , Juliana Hanusrichterová , Nela Žideková , Pavol Mikolka , Juraj Mokrý , Martin Kertys
{"title":"Novel pilot study on plasma metabolites and biomarkers in a rat model of silica-induced lung inflammation and fibrosis","authors":"Daniela Mokrá , Jana Adamčáková , Soňa Bálentová , Romana Barošová , Juliana Hanusrichterová , Nela Žideková , Pavol Mikolka , Juraj Mokrý , Martin Kertys","doi":"10.1016/j.bbagen.2024.130729","DOIUrl":null,"url":null,"abstract":"<div><div>Silica-induced lung damage may be associated with changes in distinct metabolites potentially serving as biomarkers. Due to the lack of metabolomic data from animal models, this pilot study aimed to evaluate changes in markers of inflammation and fibrosis, as well as plasma metabolites in rats at 14 and 28 days after silica instillation.</div><div>Adult male Wistar rats were administered a single oropharyngeal intratracheal dose of silica suspension or sterile saline in controls. Selected markers of inflammation, oxidative stress, fibrosis, and cell counts in blood and bronchoalveolar lavage fluid have been evaluated. Finally, plasma metabolites were detected using a targeted metabolomics approach with an MxP® Quant 500 kit.</div><div>Silica instillation induced noticeable inflammatory, oxidative, and fibrotic changes in lung tissue within the first 14 days. During the next two weeks, the shifts in some markers were further accentuated. After exposure to silica, the metabolomic analysis identified significant changes in metabolites associated with lipid metabolism, biogenic amines, amino acid derivatives, carboxylic acids, bile acids, putrescine, glycosylceramides, and acylcarnitines.</div><div>This pilot study provides initial evidence that significant alterations in plasma metabolite profiles accompany silica-induced lung injury in rats. These findings suggest a possible systemic impact, particularly on lipid metabolism, and indicate the urgent need for a deeper understanding of the metabolic reprogramming associated with silica-induced lung injury to pave the way for the discovery of novel biomarkers.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524001727","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Silica-induced lung damage may be associated with changes in distinct metabolites potentially serving as biomarkers. Due to the lack of metabolomic data from animal models, this pilot study aimed to evaluate changes in markers of inflammation and fibrosis, as well as plasma metabolites in rats at 14 and 28 days after silica instillation.
Adult male Wistar rats were administered a single oropharyngeal intratracheal dose of silica suspension or sterile saline in controls. Selected markers of inflammation, oxidative stress, fibrosis, and cell counts in blood and bronchoalveolar lavage fluid have been evaluated. Finally, plasma metabolites were detected using a targeted metabolomics approach with an MxP® Quant 500 kit.
Silica instillation induced noticeable inflammatory, oxidative, and fibrotic changes in lung tissue within the first 14 days. During the next two weeks, the shifts in some markers were further accentuated. After exposure to silica, the metabolomic analysis identified significant changes in metabolites associated with lipid metabolism, biogenic amines, amino acid derivatives, carboxylic acids, bile acids, putrescine, glycosylceramides, and acylcarnitines.
This pilot study provides initial evidence that significant alterations in plasma metabolite profiles accompany silica-induced lung injury in rats. These findings suggest a possible systemic impact, particularly on lipid metabolism, and indicate the urgent need for a deeper understanding of the metabolic reprogramming associated with silica-induced lung injury to pave the way for the discovery of novel biomarkers.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.