A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-10-07 DOI:10.3390/biomimetics9100602
Yubao Xu, Jinzhong Zhang
{"title":"A Hybrid Nonlinear Whale Optimization Algorithm with Sine Cosine for Global Optimization.","authors":"Yubao Xu, Jinzhong Zhang","doi":"10.3390/biomimetics9100602","DOIUrl":null,"url":null,"abstract":"<p><p>The whale optimization algorithm (WOA) is constructed on a whale's bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The sine cosine algorithm (SCA) constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. Therefore, a hybrid nonlinear WOA with SCA (SCWOA) is emphasized to estimate benchmark functions and engineering designs, and the ultimate intention is to investigate reasonable solutions. Compared with other algorithms, such as BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, SCWOA exemplifies a superior convergence effectiveness and greater computation profitability. The experimental results emphasize that the SCWOA not only integrates investigation and extraction to avoid premature convergence and realize the most appropriate solution but also exhibits superiority and practicability to locate greater computation precision and faster convergence speed.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100602","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The whale optimization algorithm (WOA) is constructed on a whale's bubble-net scavenging pattern and emulates encompassing prey, bubble-net devouring prey, and stochastic capturing for prey to establish the global optimal values. Nevertheless, the WOA has multiple deficiencies, such as restricted precision, sluggish convergence acceleration, insufficient population variety, easy premature convergence, and restricted operational efficiency. The sine cosine algorithm (SCA) constructed on the oscillation attributes of the cosine and sine coefficients in mathematics is a stochastic optimization methodology. The SCA upgrades population variety, amplifies the search region, and accelerates international investigation and regional extraction. Therefore, a hybrid nonlinear WOA with SCA (SCWOA) is emphasized to estimate benchmark functions and engineering designs, and the ultimate intention is to investigate reasonable solutions. Compared with other algorithms, such as BA, CapSA, MFO, MVO, SAO, MDWA, and WOA, SCWOA exemplifies a superior convergence effectiveness and greater computation profitability. The experimental results emphasize that the SCWOA not only integrates investigation and extraction to avoid premature convergence and realize the most appropriate solution but also exhibits superiority and practicability to locate greater computation precision and faster convergence speed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全局优化的正弦余弦混合非线性鲸鱼优化算法
鲸鱼优化算法(WOA)以鲸鱼的泡网清扫模式为基础,通过模拟包围猎物、泡网吞噬猎物和随机捕捉猎物来建立全局最优值。然而,WOA 存在多种缺陷,如精度受限、收敛加速缓慢、种群种类不足、容易过早收敛、运行效率受限等。正弦余弦算法(SCA)基于数学中余弦和正弦系数的振荡属性,是一种随机优化方法。SCA 提升了种群的多样性,扩大了搜索区域,加速了国际调查和区域提取。因此,我们强调用 SCA 混合非线性 WOA(SCWOA)来估计基准函数和工程设计,最终目的是研究合理的解决方案。与 BA、CapSA、MFO、MVO、SAO、MDWA 和 WOA 等其他算法相比,SCWOA 具有更高的收敛效率和计算收益。实验结果表明,SCWOA 算法不仅集调查和提取于一体,避免了过早收敛,实现了最合适的解决方案,而且在定位更高的计算精度和更快的收敛速度方面表现出了优越性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Brain-Inspired Architecture for Spiking Neural Networks. Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection. Path Planning of an Unmanned Aerial Vehicle Based on a Multi-Strategy Improved Pelican Optimization Algorithm. Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1