Evolving the Whale Optimization Algorithm: The Development and Analysis of MISWOA.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-10-18 DOI:10.3390/biomimetics9100639
Chunfang Li, Yuqi Yao, Mingyi Jiang, Xinming Zhang, Linsen Song, Yiwen Zhang, Baoyan Zhao, Jingru Liu, Zhenglei Yu, Xinyang Du, Shouxin Ruan
{"title":"Evolving the Whale Optimization Algorithm: The Development and Analysis of MISWOA.","authors":"Chunfang Li, Yuqi Yao, Mingyi Jiang, Xinming Zhang, Linsen Song, Yiwen Zhang, Baoyan Zhao, Jingru Liu, Zhenglei Yu, Xinyang Du, Shouxin Ruan","doi":"10.3390/biomimetics9100639","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces an enhanced Whale Optimization Algorithm, named the Multi-Swarm Improved Spiral Whale Optimization Algorithm (MISWOA), designed to address the shortcomings of the traditional Whale Optimization Algorithm (WOA) in terms of global search capability and convergence velocity. The MISWOA combines an adaptive nonlinear convergence factor with a variable gain compensation mechanism, adaptive weights, and an advanced spiral convergence strategy, resulting in a significant enhancement in the algorithm's global search capability, convergence velocity, and precision. Moreover, MISWOA incorporates a multi-population mechanism, further bolstering the algorithm's efficiency and robustness. Ultimately, an extensive validation of MISWOA through \"simulation + experimentation\" approaches has been conducted, demonstrating that MISWOA surpasses other algorithms and the Whale Optimization Algorithm (WOA) and its variants in terms of convergence accuracy and algorithmic efficiency. This validates the effectiveness of the improvement method and the exceptional performance of MISWOA, while also highlighting its substantial potential for application in practical engineering scenarios. This study not only presents an improved optimization algorithm but also constructs a systematic framework for analysis and research, offering novel insights for the comprehension and refinement of swarm intelligence algorithms.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an enhanced Whale Optimization Algorithm, named the Multi-Swarm Improved Spiral Whale Optimization Algorithm (MISWOA), designed to address the shortcomings of the traditional Whale Optimization Algorithm (WOA) in terms of global search capability and convergence velocity. The MISWOA combines an adaptive nonlinear convergence factor with a variable gain compensation mechanism, adaptive weights, and an advanced spiral convergence strategy, resulting in a significant enhancement in the algorithm's global search capability, convergence velocity, and precision. Moreover, MISWOA incorporates a multi-population mechanism, further bolstering the algorithm's efficiency and robustness. Ultimately, an extensive validation of MISWOA through "simulation + experimentation" approaches has been conducted, demonstrating that MISWOA surpasses other algorithms and the Whale Optimization Algorithm (WOA) and its variants in terms of convergence accuracy and algorithmic efficiency. This validates the effectiveness of the improvement method and the exceptional performance of MISWOA, while also highlighting its substantial potential for application in practical engineering scenarios. This study not only presents an improved optimization algorithm but also constructs a systematic framework for analysis and research, offering novel insights for the comprehension and refinement of swarm intelligence algorithms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲸鱼优化算法的演变:MISWOA 的开发与分析。
本文针对传统鲸鱼优化算法(WOA)在全局搜索能力和收敛速度方面的不足,介绍了一种增强型鲸鱼优化算法,命名为多蜂群改进螺旋鲸鱼优化算法(MISWOA)。MISWOA 结合了自适应非线性收敛因子、可变增益补偿机制、自适应权重和先进的螺旋收敛策略,从而显著提高了算法的全局搜索能力、收敛速度和精度。此外,MISWOA 还采用了多群体机制,进一步提高了算法的效率和鲁棒性。最后,通过 "模拟 + 实验 "方法对 MISWOA 进行了广泛验证,证明 MISWOA 在收敛精度和算法效率方面超越了其他算法和鲸鱼优化算法(WOA)及其变体。这验证了改进方法的有效性和 MISWOA 的卓越性能,同时也凸显了其在实际工程应用中的巨大潜力。这项研究不仅提出了一种改进的优化算法,还构建了一个系统的分析和研究框架,为理解和改进蜂群智能算法提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Brain-Inspired Architecture for Spiking Neural Networks. Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection. Path Planning of an Unmanned Aerial Vehicle Based on a Multi-Strategy Improved Pelican Optimization Algorithm. Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1