{"title":"Hybrid Multi-Objective Chameleon Optimization Algorithm Based on Multi-Strategy Fusion and Its Applications.","authors":"Yaodan Chen, Li Cao, Yinggao Yue","doi":"10.3390/biomimetics9100583","DOIUrl":null,"url":null,"abstract":"<p><p>Aiming at the problems of chameleon swarm algorithm (CSA), such as slow convergence speed, poor robustness, and ease of falling into the local optimum, a multi-strategy improved chameleon optimization algorithm (ICSA) is herein proposed. Firstly, logistic mapping was introduced to initialize the chameleon population to improve the diversity of the initial population. Secondly, in the prey-search stage, the sub-population spiral search strategy was introduced to improve the global search ability and optimization accuracy of the algorithm. Then, considering the blindness of chameleon's eye turning to find prey, the Lévy flight strategy with cosine adaptive weight was combined with greed strategy to enhance the guidance of random exploration in the eyes' rotation stage. Finally, a nonlinear varying weight was introduced to update the chameleon position in the prey-capture stage, and the refraction reverse-learning strategy was used to improve the population activity in the later stage so as to improve the ability of the algorithm to jump out of the local optimum. Eighteen functions in the CEC2005 benchmark test set were selected as an experimental test set, and the performance of ICSA was tested and compared with five other swarm intelligent optimization algorithms. The analysis of the experimental results of 30 independent runs showed that ICSA has stronger convergence performance and optimization ability. Finally, ICSA was applied to the UAV path-planning problem. The simulation results showed that compared with other algorithms, the paths generated by ICSA in different terrain scenarios are shorter and more stable.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100583","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the problems of chameleon swarm algorithm (CSA), such as slow convergence speed, poor robustness, and ease of falling into the local optimum, a multi-strategy improved chameleon optimization algorithm (ICSA) is herein proposed. Firstly, logistic mapping was introduced to initialize the chameleon population to improve the diversity of the initial population. Secondly, in the prey-search stage, the sub-population spiral search strategy was introduced to improve the global search ability and optimization accuracy of the algorithm. Then, considering the blindness of chameleon's eye turning to find prey, the Lévy flight strategy with cosine adaptive weight was combined with greed strategy to enhance the guidance of random exploration in the eyes' rotation stage. Finally, a nonlinear varying weight was introduced to update the chameleon position in the prey-capture stage, and the refraction reverse-learning strategy was used to improve the population activity in the later stage so as to improve the ability of the algorithm to jump out of the local optimum. Eighteen functions in the CEC2005 benchmark test set were selected as an experimental test set, and the performance of ICSA was tested and compared with five other swarm intelligent optimization algorithms. The analysis of the experimental results of 30 independent runs showed that ICSA has stronger convergence performance and optimization ability. Finally, ICSA was applied to the UAV path-planning problem. The simulation results showed that compared with other algorithms, the paths generated by ICSA in different terrain scenarios are shorter and more stable.