MSAO-EDA: A Modified Snow Ablation Optimizer by Hybridizing with Estimation of Distribution Algorithm.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-10-07 DOI:10.3390/biomimetics9100603
Wuke Li, Xiaoxiao Chen, Hector Chimeremeze Okere
{"title":"MSAO-EDA: A Modified Snow Ablation Optimizer by Hybridizing with Estimation of Distribution Algorithm.","authors":"Wuke Li, Xiaoxiao Chen, Hector Chimeremeze Okere","doi":"10.3390/biomimetics9100603","DOIUrl":null,"url":null,"abstract":"<p><p>Metaheuristic algorithms provide reliable and effective methods for solving challenging optimization problems. The snow ablation algorithm (SAO) performs favorably as a physics-based metaheuristic algorithm. Nevertheless, SAO has some shortcomings. SAO is overpowered in its exploitation, has difficulty in balancing the proportion of global and local search, and is prone to encountering local optimum traps when confronted with complex problems. To improve the capability of SAO, this paper proposes a modified snow ablation algorithm hybrid distribution estimation algorithm named MSAO-EDA. In this work, a collaborative search framework is proposed where SAO and EDA can be organically integrated together to fully utilize the exploitation capability of SAO and the exploration capability of EDA. Secondly, an offset EDA approach that combines the optimal solution and the agent itself is used to replace SAO's exploration strategy for the purpose of enhancing SAO's exploration capability. Finally, the convergence of SAO is accelerated by selecting the next generation of agents through a greedy strategy. MSAO-EDA is tested on the CEC 2017 and CEC 2022 test suites and compared with EO, RIME, MRFO, CFOA, and four advanced algorithms, AFDBARO, CSOAOA, EOSMA, and JADE. The experimental results show that MSAO-EDA has excellent efficiency in numerical optimization problems and is a highly competitive SAO variant.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100603","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metaheuristic algorithms provide reliable and effective methods for solving challenging optimization problems. The snow ablation algorithm (SAO) performs favorably as a physics-based metaheuristic algorithm. Nevertheless, SAO has some shortcomings. SAO is overpowered in its exploitation, has difficulty in balancing the proportion of global and local search, and is prone to encountering local optimum traps when confronted with complex problems. To improve the capability of SAO, this paper proposes a modified snow ablation algorithm hybrid distribution estimation algorithm named MSAO-EDA. In this work, a collaborative search framework is proposed where SAO and EDA can be organically integrated together to fully utilize the exploitation capability of SAO and the exploration capability of EDA. Secondly, an offset EDA approach that combines the optimal solution and the agent itself is used to replace SAO's exploration strategy for the purpose of enhancing SAO's exploration capability. Finally, the convergence of SAO is accelerated by selecting the next generation of agents through a greedy strategy. MSAO-EDA is tested on the CEC 2017 and CEC 2022 test suites and compared with EO, RIME, MRFO, CFOA, and four advanced algorithms, AFDBARO, CSOAOA, EOSMA, and JADE. The experimental results show that MSAO-EDA has excellent efficiency in numerical optimization problems and is a highly competitive SAO variant.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSAO-EDA:混合分布估计算法的修正雪消融优化器。
元启发式算法为解决具有挑战性的优化问题提供了可靠而有效的方法。雪消融算法(SAO)作为一种基于物理学的元启发式算法,表现出色。不过,SAO 也有一些不足之处。SAO的利用能力过强,难以平衡全局搜索和局部搜索的比例,在面对复杂问题时容易遇到局部最优陷阱。为了提高 SAO 的能力,本文提出了一种改进的雪消融算法混合分布估计算法,命名为 MSAO-EDA。本文提出了一种协同搜索框架,将 SAO 和 EDA 有机地结合在一起,以充分利用 SAO 的开发能力和 EDA 的探索能力。其次,为了增强 SAO 的探索能力,采用了一种将最优解和代理本身相结合的抵消 EDA 方法来替代 SAO 的探索策略。最后,通过贪婪策略选择下一代代理,加速 SAO 的收敛。MSAO-EDA 在 CEC 2017 和 CEC 2022 测试套件上进行了测试,并与 EO、RIME、MRFO、CFOA 以及 AFDBARO、CSOAOA、EOSMA 和 JADE 四种高级算法进行了比较。实验结果表明,MSAO-EDA 在数值优化问题上具有出色的效率,是一种极具竞争力的 SAO 变种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Brain-Inspired Architecture for Spiking Neural Networks. Explorative Binary Gray Wolf Optimizer with Quadratic Interpolation for Feature Selection. Path Planning of an Unmanned Aerial Vehicle Based on a Multi-Strategy Improved Pelican Optimization Algorithm. Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1