Set Packing Optimization by Evolutionary Algorithms with Theoretical Guarantees.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2024-09-27 DOI:10.3390/biomimetics9100586
Youzhen Jin, Xiaoyun Xia, Zijia Wang, Xue Peng, Jun Zhang, Weizhi Liao
{"title":"Set Packing Optimization by Evolutionary Algorithms with Theoretical Guarantees.","authors":"Youzhen Jin, Xiaoyun Xia, Zijia Wang, Xue Peng, Jun Zhang, Weizhi Liao","doi":"10.3390/biomimetics9100586","DOIUrl":null,"url":null,"abstract":"<p><p>The set packing problem is a core NP-complete combinatorial optimization problem which aims to find the maximum collection of disjoint sets from a given collection of sets, <i>S</i>, over a ground set, <i>U</i>. Evolutionary algorithms (EAs) have been widely used as general-purpose global optimization methods and have shown promising performance for the set packing problem. While most previous studies are mainly based on experimentation, there is little theoretical investigation available in this area. In this study, we analyze the approximation performance of simplified versions of EAs, specifically the (1+1) EA, for the set packing problem from a theoretical perspective. Our analysis demonstrates that the (1+1) EA can provide an approximation guarantee in solving the <i>k</i>-set packing problem. Additionally, we construct a problem instance and prove that the (1+1) EA beats the local search algorithm on this specific instance. This proof reveals that evolutionary algorithms can have theoretical guarantees for solving NP-hard optimization problems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"9 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics9100586","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The set packing problem is a core NP-complete combinatorial optimization problem which aims to find the maximum collection of disjoint sets from a given collection of sets, S, over a ground set, U. Evolutionary algorithms (EAs) have been widely used as general-purpose global optimization methods and have shown promising performance for the set packing problem. While most previous studies are mainly based on experimentation, there is little theoretical investigation available in this area. In this study, we analyze the approximation performance of simplified versions of EAs, specifically the (1+1) EA, for the set packing problem from a theoretical perspective. Our analysis demonstrates that the (1+1) EA can provide an approximation guarantee in solving the k-set packing problem. Additionally, we construct a problem instance and prove that the (1+1) EA beats the local search algorithm on this specific instance. This proof reveals that evolutionary algorithms can have theoretical guarantees for solving NP-hard optimization problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用进化算法优化集合打包,并提供理论保证。
集合打包问题是一个核心的 NP-完全组合优化问题,其目的是从给定集合 S 在地面集合 U 上找到最大的不相交集合。进化算法(EA)已被广泛用作通用的全局优化方法,并在集合打包问题上显示出良好的性能。以往的研究大多以实验为基础,而这方面的理论研究却很少。在本研究中,我们从理论角度分析了简化版 EA(特别是 (1+1) EA)在集合打包问题上的近似性能。我们的分析表明,(1+1) EA 可以为解决 k 集打包问题提供近似保证。此外,我们还构建了一个问题实例,并证明 (1+1) 进化算法在这个特定实例上战胜了局部搜索算法。这一证明揭示了进化算法可以为解决 NP 难优化问题提供理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
3D Printing and Property of Biomimetic Hydroxyapatite Scaffold. A Multi-Objective Optimization Framework That Incorporates Interpretable CatBoost and Modified Slime Mould Algorithm to Resolve Boiler Combustion Optimization Problem. Application of Real-Time Palm Imaging with Nelder-Mead Particle Swarm Optimization/Regression Algorithms for Non-Contact Blood Pressure Detection. Sodium Alginate-Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids. Integrating Historical Learning and Multi-View Attention with Hierarchical Feature Fusion for Robotic Manipulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1